five

Inputs of the manuscript: "On the Characterization and Evaluation of Residential On-Site E-Car-Sharing"

收藏
Mendeley Data2024-03-27 更新2024-06-27 收录
下载链接:
https://data.mendeley.com/datasets/cjjyjvb85d
下载链接
链接失效反馈
资源简介:
This dataset describes the time-series used as inputs in the calculations within the manuscript: "On the Characterization and Evaluation of Residential On-Site E-Car-Sharing". We aim to facilitate the reproducibility of our calculations and optimization model. The data are generated with different tools, described in the excel-file itself. In the table "Electric Vehicles" the raw data of the electric vehicles used in the manuscript are given. This data gives information about the use of electric vehicles. The electric vehicles profiles have been generated with the Python toolbox emobpy (https://www.nature.com/articles/s41597-021-00932-9). In the table "Residential Loads" the raw data of the residential consumptions of the tenants used in the paper "On the Characterization and Evaluation of Residential On-Site E-Car-Sharing" are given. The residential consumption of a tenant is given by its electrical consumption in kWh in each timestep. These time-series have been generated with the LoadprofileGenerator software (https://www.loadprofilegenerator.de/). In the table "PV specific profile" the specific photovoltaic generation profile of a generic photovoltaik panel in Austria is given. The PV specific profile (in kw/kWp) is given by the specific power output of 1kWp photovoltaic panel in each timestep. The PV specific profile has been extracted from the Entsoe Transparency Platform (https://transparency.entsoe.eu/).
创建时间:
2024-01-23
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

URPC系列数据集, S-URPC2019, UDD

URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。

github 收录

RDD2022

RDD2022是一个多国图像数据集,用于自动道路损伤检测,由印度理工学院罗凯里分校交通系统中心等机构创建。该数据集包含来自六个国家的47,420张道路图像,标注了超过55,000个道路损伤实例。数据集通过智能手机和高分辨率相机等设备采集,旨在通过深度学习方法自动检测和分类道路损伤。RDD2022数据集的应用领域包括道路状况的自动监测和计算机视觉算法的性能基准测试,特别关注于解决多国道路损伤检测的问题。

arXiv 收录

UAVDT Dataset

The authors constructed a new UAVDT Dataset focused on complex scenarios with new level challenges. Selected from 10 hours raw videos, about 80, 000 representative frames are fully annotated with bounding boxes as well as up to 14 kinds of attributes (e.g., weather condition, flying altitude, camera view, vehicle category, and occlusion) for three fundamental computer vision tasks: object detection, single object tracking, and multiple object tracking.

datasetninja.com 收录

LANDSLIDE DETECTION

该数据集专注于山体滑坡现象的识别与分类,旨在为改进YOLOv8模型提供高质量的训练数据。数据集包含1600幅图像,类别数量为1,具体类别为“LANDSLIDE”。数据集的构建考虑了山体滑坡的多样性与复杂性,确保模型在实际应用中具备良好的泛化能力。

github 收录