Votive, cone, UT 1599-25
收藏全国兴趣点(POI)数据
POI(Point of Interest),即兴趣点,一个POI可以是餐厅、超市、景点、酒店、车站、停车场等。兴趣点通常包含四方面信息,分别为名称、类别、坐标、分类。其中,分类一般有一级分类和二级分类,每个分类都有相应的行业的代码和名称一一对应。 POI包含的信息及其衍生信息主要包含三个部分:
CnOpenData 收录
Photovoltaic power plant data
包括经纬度、电源板模型、NWP等信息。
github 收录
MMOral
MMOral是一个针对全景X光片解读的大规模多模态指令数据集和基准。它包括20,563张带有1.3百万条指令跟随实例的注释图像,涵盖了多种任务类型,如属性提取、报告生成、视觉问答和基于图像的对话。此外,我们还提出了MMOral-Bench,这是一个涵盖牙科五个关键诊断维度的综合评估套件。我们评估了64个LVLMs在MMOral-Bench上的表现,发现即使是表现最好的模型GPT-4o,也只能达到41.45%的准确率,这揭示了当前模型在这一领域的显著局限性。为了促进该特定领域的发展,我们还提出了OralGPT,它使用我们精心策划的MMOral指令数据集对Qwen2.5-VL-7B进行监督微调。值得注意的是,一个SFT周期就为LVLMs带来了显著的性能提升,例如,OralGPT表现出24.73%的改进。MMOral和OralGPT都具有作为智能牙科关键基础的巨大潜力,并使牙科领域中的多模态AI系统更具临床意义。数据集、模型、基准和评估套件可在上述网址获取。
arXiv 收录
Oxford 102 Flowers
牛津102花卉数据集是一个主要用于图像分类的花卉集合数据集,分为102个类别,共102种花卉,其中每个类别包含40到258幅图像。 该数据集由牛津大学工程科学系2008年在相关论文 “大量类别上的自动花分类” 中发布
OpenDataLab 收录
电商购物用户行为分析数据
电商购物用户行为分析数据 这份数据集是一个顾客购物信息的集合,记录了不同顾客在不同时间的购物行为。每一行代表一个单独的购物发票记录,数据集中包含了以下属性: 数据属性: 1. invoice_no: 发票号码,是每次交易的唯一标识符。 2. customer_id: 顾客的ID,用于标识不同的顾客。 3. gender: 顾客的性别,分为"Male"(男性)和"Female"(女性)。 4. age: 顾客的年龄。 5. category: 顾客购买的商品类别,如"Clothing"(服装)、"Shoes"(鞋子)、"Books"(书籍)、"Cosmetics"(化妆品)、"Toys"(玩具)、"Food & Beverage"(食品和饮料)、"Technology"(科技产品)、"Souvenir"(纪念品)等。 6. quantity: 顾客购买的商品数量。 7. price: 顾客为这次购物支付的总金额。 8. payment_method: 顾客使用的支付方式,包括"Alipay"(支付宝)、"WeChat Pay"(微信支付)、"Card"(银行卡)。 9. invoice_date: 发票日期,记录了交易发生的日期。
阿里云天池 收录
