CCDC 857602: Experimental Crystal Structure Determination
收藏flames-and-smoke-datasets
该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。
github 收录
Awesome AIGC Image Detection
这是一个新的AIGC图像检测基准,包含六个数据集和十种检测方法。每个数据集都基于相应的代码运行,并提供了运行代码和环境以及结果日志。
github 收录
SMSSpamCollection
该数据集包含数千条标记为spam或ham(非垃圾邮件)的短信。它反映了日常通信的典型情况,并包含常见的垃圾邮件词汇,为评估文本分类模型提供了现实基础。
github 收录
Solar Radiation Data
该数据集包含全球多个地点的太阳辐射数据,涵盖了不同时间段和气象条件下的辐射强度。数据包括直接辐射、散射辐射和总辐射等指标,适用于太阳能资源评估和气候研究。
www.nrel.gov 收录
全球1km分辨率大气二氧化碳浓度数据集(2003-2023)
持续增加的人为CO₂排放导致了全球变暖和气候变化,进而引发了全球范围的重大环境、经济和健康损失,基于卫星遥感数据准确连续地监测大气CO₂变化对于理解全球碳循环、评估碳源和碳汇的分布以及制定有效的减排政策至关重要。大气CO2柱浓度(XCO2)指从地表到大气顶层干燥空气柱中CO2的平均体积比,是用来表征大气中CO2分子含量的物理量。当前已公开发表的全球无缝XCO2产品存在无法同时提供长时间跨度和高时空分辨率的问题,限制了其更为广泛的科学应用。本数据集基于来自SCIAMACHY、GOSAT 和 OCO-2 三颗卫星/传感器的XCO2观测数据进行二次研发,以卫星XCO2观测数据为训练标签,与 CO₂ 排放、吸收和传输相关的多源因素为解释变量,利用整合了U-Net网络和ConvLSTM网络的深度学习算法构建预测模型,生成了国际首套2003-2023年全球时空连续1公里分辨率逐日XCO2数据集。经全球27个TCCON地面观测站点的验证,结果表明该产品具有较好的精度(决定系数R2为0.989,均方根误差RMSE为1.021ppm)。本数据集为深化对全球碳循环的理解、评估减排政策以及应对气候变化挑战提供了重要的基础数据。
国家青藏高原科学数据中心 收录
