five

Flood Disasters in Yunnan Province During 1986-2020

收藏
Mendeley Data2024-03-27 更新2024-06-26 收录
下载链接:
https://data.mendeley.com/datasets/sgb2wy8nkh
下载链接
链接失效反馈
资源简介:
This is a geospatial dataset stored in .gdb format. We compiled information on flood disaster events in Yunnan Province from 1986 to 2020 by extracting relevant data from the documentary materials recorded by government administrative departments, and constructed a spatial dataset of flood disaster events according to the geospatial data specification. Data on relevant geographical, occurrence, casualties, economic losses, and information sources are also provided. Rich and reliable data sources, rigorous data collation process, cross-validation of detailed disaster information guarantee the quality of this dataset. This dataset can be utilized for research related to flood disasters, such as the analysis of spatiotemporal evolution patterns, the elucidation of spatial distribution driving mechanisms, and the assessment of disaster risks. This dataset can be employed for conducting research on the spatiotemporal evolution patterns of flood disasters, deciphering the driving mechanisms behind their spatial distribution, and assessing disaster risks.
创建时间:
2024-01-23
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

基于OFES数据计算台湾以东逐月位涡(1993-2017)

基于1993-2017年间OFES高分辨率模式数据集中的温度和盐度数据计算的台湾以东位势涡度逐月三维分布。所使用OFES数据为开源数据。

国家海洋科学数据中心 收录

DIPSEER: A Dataset for In-Person Student Emotion and Engagement Recognition in the Wild

DIPSEER是一个用于识别学生情绪和参与度的数据集,包含图像、标签和传感器数据。

github 收录

LFW (Labeled Faces in the Wild)

Labeled Faces in the Wild,是一个人脸照片数据库,旨在研究无约束的人脸识别问题。该数据集包含从网络收集的超过 13,000 张人脸图像。每张脸都标有图中人物的名字。照片中的 1680 人在数据集中有两张或更多张不同的照片。这些人脸的唯一限制是它们是由 Viola-Jones 人脸检测器检测到的。更多细节可以在下面的技术报告中找到。

OpenDataLab 收录

LOL (LOw-Light dataset)

LOL 数据集由 500 个低光和正常光图像对组成,分为 485 个训练对和 15 个测试对。低光图像包含照片捕获过程中产生的噪声。大多数图像是室内场景。所有图像的分辨率均为 400×600。

OpenDataLab 收录

PlantVillage

在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。

OpenDataLab 收录