five

PISCO: Intertidal: site temperature data: Strawberry Hill, Oregon, USA (SHLX00)

收藏
Mendeley Data2024-01-31 更新2024-06-28 收录
下载链接:
https://data.piscoweb.org/metacatui/#view/doi:10.6085/AA/SHLX00_XXXITV2XLSR03_20100911.50.2
下载链接
链接失效反馈
资源简介:
This metadata record describes a mix of intertidal seawater and air temperature data collected at Strawberry Hill, Oregon, USA by PISCO. Measurements were collected using Onset Tidbit V2 Temp Data Logger (Onset Computer Corp. UTBI-001) beginning 2010-09-11. Site temperature loggers are bolted down in a wire cage at various locations within each site. Mussel growth temperature loggers are bolted down in a wire cage at high, mid, or low positions within a mussel bed. Temperature is recorded at 5.0 minute intervals.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

福建省龙岩市长汀县2002年森林分类经营图

该数据为福建省龙岩市长汀县2002年森林分类经营图,数据为矢量数据,包括行政单元、行政代码、类型、类型代码、标准类型、标准类型代码等属性字段,该数据为森林资源清查、规划设计等提供数据支撑服务。

国家林业和草原科学数据中心 收录

AirSafe_DB

该数据集包含了从Plane Crash Info网站上抓取的飞机事故的结构化信息,原始数据为CSV格式,经过AI模型处理后生成了标准化的JSON格式数据。数据集包含5049条记录,每条记录包括事故信息(日期、时间、地点等)、飞机信息(运营商、航班号、机型等)、伤亡统计(总死亡人数、机组人员、乘客、地面人员等)、事故摘要(事故描述、事故类型、飞行阶段等)等内容。数据经过标准化处理,确保数据质量和一致性,适用于分析和研究。

huggingface 收录

BDD100K

数据集推动了视觉的进步,但现有的驾驶数据集在视觉内容和支持任务方面缺乏研究,以研究自动驾驶的多任务学习。研究人员通常只能在一个数据集上研究一小组问题,而现实世界的计算机视觉应用程序需要执行各种复杂的任务。我们构建了最大的驾驶视频数据集 BDD100K,包含 10 万个视频和 10 个任务,以评估图像识别算法在自动驾驶方面的令人兴奋的进展。该数据集具有地理、环境和天气的多样性,这对于训练不太可能对新条件感到惊讶的模型很有用。基于这个多样化的数据集,我们为异构多任务学习建立了一个基准,并研究了如何一起解决这些任务。我们的实验表明,现有模型需要特殊的训练策略来执行此类异构任务。 BDD100K 为未来在这个重要场所的学习打开了大门。更多详细信息请参见数据集主页。

OpenDataLab 收录

OpenML-CC18

我们提倡使用经过整理的、全面的机器学习数据集基准测试套件,以标准化的基于 OpenML 的接口和用 Python、Java 和 R 编写的互补软件工具包为后盾。我们展示了如何使用标准化的基于 OpenML 的基准测试套件轻松执行全面的基准测试研究以及用 Python、Java 和 R 编写的互补软件工具包。 OpenML 基准测试套件的主要显着特点是 (i) 通过标准化数据格式、API 和现有客户端库易于使用; (ii) 关于套件内容的机器可读元信息; (iii) 在线共享结果,实现大规模比较。作为第一个这样的套件,我们提出了 OpenML-CC18,这是一个机器学习基准套件,包含 72 个分类数据集,从 OpenML 上的数千个数据集中精心策划。纳入标准是: * 密集数据集独立观察的分类任务 * 类数 >= 2,每个类至少有 20 个观察和少数类与多数类的比例必须超过 5% * 500 <= 观察数 <= 100000 * one-hot-encoding 后的特征数量 < 5000 * 没有人工数据集 * 没有更大数据集的子集,也没有其他数据集的二值化 * 没有可以通过使用单个特征或使用简单的决策树来完全预测的数据集* 来源或参考可用 如果您使用此基准测试套件,请引用:Bernd Bischl、Giuseppe Casalicchio、Matthias Feurer、Frank Hutter、Michel Lang、Rafael G. Mantovani、Jan N. van Rijn 和 Joaquin Vanschoren。 “OpenML 基准测试套件”arXiv:1708.03731v2 [stats.ML] (2019)。 @article{oml-benchmarking-suites, title={OpenML Benchmarking Suites}, author={Bernd Bischl and Giuseppe Casalicchio and Matthias Feurer and Frank Hutter and Michel Lang and Rafael G. Mantovani and Jan N. van Rijn and Joaquin Vanschoren},年={2019},日记={arXiv:1708.03731v2 [stat.ML]} }

OpenDataLab 收录

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录