five

Beach profile data for the Elwha River Delta, 2013-04-01

收藏
Mendeley Data2023-02-23 更新2024-06-27 收录
下载链接:
https://doi.pangaea.de/10.1594/PANGAEA.901537
下载链接
链接失效反馈
资源简介:
Data were collected using GNSS survey methods, with a differential GPS operating in Real Time Kinematic (RTK) mode. Data from prior to 2013 were typically collected with a Magellan ProMark 3 traditional RKT-DGPS system (i.e. local base station and rover), with the base station sited on survey control markers installed in 1996, with survey control coordinates referenced to NAD83(CORS91). Starting in 2013 survey data were typically collected with an AshTech ProMark 200 RTK-DGPS system connected to the Washington State Reference Network. Survey data collected between January and November 2013 are referenced to NAD83(CORS96), and after November 2013 to NAD83(2011). Vertical data for surveys in 2012 and 2013 are referenced to NAVD88, presumably using Geoid96 (the survey control documentation does not specific a geoid). For all subsequent surveys the vertical data are referenced to NAVD88(Geoid09). No conversion were applied to these data to account for variations in horizontal or vertical coordinate system adjustments through time, but an error analysis suggests a standard deviation for the elevation data of between 0.03 and 0.05 m across the entire sampling period (2011-2018). All survey data were collected with the GNSS system mounted on a 2.05 m rover pole, held level as a transect line was traced in a cross-shore orientation on the beach. The associated text files include the horizontal (HRMS) and vertical (VRMS) root-mean-square errors estimated by the GNSS system, as well as the RTK-DGPS status reported by the GNSS system at the time each point was collected. Times are referenced to local Pacific time (either PST or PDT).
创建时间:
2022-01-24
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

UAVDT Dataset

The authors constructed a new UAVDT Dataset focused on complex scenarios with new level challenges. Selected from 10 hours raw videos, about 80, 000 representative frames are fully annotated with bounding boxes as well as up to 14 kinds of attributes (e.g., weather condition, flying altitude, camera view, vehicle category, and occlusion) for three fundamental computer vision tasks: object detection, single object tracking, and multiple object tracking.

datasetninja.com 收录

中国近海台风路径集合数据集(1945-2024)

1945-2024年度,中国近海台风路径数据集,包含每个台风的真实路径信息、台风强度、气压、中心风速、移动速度、移动方向。时间为北京时间。

国家海洋科学数据中心 收录

LFW (Labeled Faces in the Wild)

Labeled Faces in the Wild,是一个人脸照片数据库,旨在研究无约束的人脸识别问题。该数据集包含从网络收集的超过 13,000 张人脸图像。每张脸都标有图中人物的名字。照片中的 1680 人在数据集中有两张或更多张不同的照片。这些人脸的唯一限制是它们是由 Viola-Jones 人脸检测器检测到的。更多细节可以在下面的技术报告中找到。

OpenDataLab 收录