Concrete Compressive Strength|混凝土数据集|材料性能数据集
收藏
- 首次发表关于混凝土抗压强度的数据集,由Yeh在1987年提出,作为研究混凝土材料性能的基础数据。
- 数据集被广泛应用于机器学习领域,特别是在预测混凝土抗压强度方面,成为经典案例。
- 随着数据科学的发展,该数据集被用于多种算法的比较研究,进一步推动了混凝土材料性能预测技术的发展。
- 数据集在建筑工程和材料科学领域的应用进一步扩展,成为评估混凝土结构耐久性和安全性的重要工具。
- 随着人工智能技术的进步,该数据集被用于开发更精确的混凝土抗压强度预测模型,提升了工程实践中的应用价值。
- 1Prediction of Concrete Compressive Strength: A Neural Network ApproachUniversity of Tabriz · 2009年
- 2A Comparative Study of Machine Learning Models for Predicting Concrete Compressive StrengthUniversity of Malaya · 2020年
- 3Concrete Compressive Strength Prediction Using Machine Learning TechniquesUniversity of Technology Sydney · 2019年
- 4Predicting Concrete Compressive Strength Using Support Vector MachinesUniversity of Tehran · 2018年
- 5Concrete Compressive Strength Prediction Using Deep Learning ModelsUniversity of Liverpool · 2021年
UniProt
UniProt(Universal Protein Resource)是全球公认的蛋白质序列与功能信息权威数据库,由欧洲生物信息学研究所(EBI)、瑞士生物信息学研究所(SIB)和美国蛋白质信息资源中心(PIR)联合运营。该数据库以其广度和深度兼备的蛋白质信息资源闻名,整合了实验验证的高质量数据与大规模预测的自动注释内容,涵盖从分子序列、结构到功能的全面信息。UniProt核心包括注释详尽的UniProtKB知识库(分为人工校验的Swiss-Prot和自动生成的TrEMBL),以及支持高效序列聚类分析的UniRef和全局蛋白质序列归档的UniParc。其卓越的数据质量和多样化的检索工具,为基础研究和药物研发提供了无可替代的支持,成为生物学研究中不可或缺的资源。
www.uniprot.org 收录
MultiTalk
MultiTalk数据集是由韩国科学技术院创建,包含超过420小时的2D视频,涵盖20种不同语言,旨在解决多语言环境下3D说话头生成的问题。该数据集通过自动化管道从YouTube收集,每段视频都配有语言标签和伪转录,部分视频还包含伪3D网格顶点。数据集的创建过程包括视频收集、主动说话者验证和正面人脸验证,确保数据质量。MultiTalk数据集的应用领域主要集中在提升多语言3D说话头生成的准确性和表现力,通过引入语言特定风格嵌入,使模型能够捕捉每种语言独特的嘴部运动。
arXiv 收录
TM-Senti
TM-Senti是由伦敦玛丽女王大学开发的一个大规模、远距离监督的Twitter情感数据集,包含超过1.84亿条推文,覆盖了超过七年的时间跨度。该数据集基于互联网档案馆的公开推文存档,可以完全重新构建,包括推文元数据且无缺失推文。数据集内容丰富,涵盖多种语言,主要用于情感分析和文本分类等任务。创建过程中,研究团队精心筛选了表情符号和表情,确保数据集的质量和多样性。该数据集的应用领域广泛,旨在解决社交媒体情感表达的长期变化问题,特别是在表情符号和表情使用上的趋势分析。
arXiv 收录
全国 1∶200 000 数字地质图(公开版)空间数据库
As the only one of its kind, China National Digital Geological Map (Public Version at 1∶200 000 scale) Spatial Database (CNDGM-PVSD) is based on China' s former nationwide measured results of regional geological survey at 1∶200 000 scale, and is also one of the nationwide basic geosciences spatial databases jointly accomplished by multiple organizations of China. Spatially, it embraces 1 163 geological map-sheets (at scale 1: 200 000) in both formats of MapGIS and ArcGIS, covering 72% of China's whole territory with a total data volume of 90 GB. Its main sources is from 1∶200 000 regional geological survey reports, geological maps, and mineral resources maps with an original time span from mid-1950s to early 1990s. Approved by the State's related agencies, it meets all the related technical qualification requirements and standards issued by China Geological Survey in data integrity, logic consistency, location acc racy, attribution fineness, and collation precision, and is hence of excellent and reliable quality. The CNDGM-PVSD is an important component of China' s national spatial database categories, serving as a spatial digital platform for the information construction of the State's national economy, and providing informationbackbones to the national and provincial economic planning, geohazard monitoring, geological survey, mineral resources exploration as well as macro decision-making.
DataCite Commons 收录
iAWE
iAWE是一个专为非侵入式负载监测(NILM)算法设计的优秀数据集。数据集包含多个家用电器的能耗数据,如冰箱、空调、洗衣机等,每个CSV文件包含时间戳和能耗相关参数。数据集的原始格式存在一些问题,如时间戳处理和数据不一致性,需要进行预处理以适应NILM算法。
github 收录