five

Evaluation of Endemic Malaria and Vector Control Practices in the Bongor Prefecture of Mayo-Kebbi (Republic of Chad)|疟疾数据集|流行病学数据集

收藏
Global Health Data Exchange ()2024-06-26 收录
疟疾
流行病学
下载链接:
https://ghdx.healthdata.org/record/evaluation-endemic-malaria-and-vector-control-practices-bongor-prefecture-mayo-kebbi-republic
下载链接
链接失效反馈
资源简介:
This source appears in the Malaria Atlas Project Plasmodium Falciparum Parasite Rate Database.
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

PTB-Image

PTB-Image是一个包含扫描纸质心电图和相应数字信号的综合数据集,由越南河内VinUniversity College of Engineering and Computer Science和VinUni-Illinois Smart Health Center创建。该数据集旨在推动心电图数字化技术的研究,包含549个记录,每个记录由一位至五位患者的15个同步心电图信号组成,涵盖标准12导联心电图和Frank导联。数据集通过扫描原始PTB数据集的纸质心电图并打印部分信号制作而成,可用于心电图数字化、自动诊断及远程医疗等领域的应用研究。

arXiv 收录

UAVDT Dataset

The authors constructed a new UAVDT Dataset focused on complex scenarios with new level challenges. Selected from 10 hours raw videos, about 80, 000 representative frames are fully annotated with bounding boxes as well as up to 14 kinds of attributes (e.g., weather condition, flying altitude, camera view, vehicle category, and occlusion) for three fundamental computer vision tasks: object detection, single object tracking, and multiple object tracking.

datasetninja.com 收录

TCM-Tongue

TCM-Tongue是一个专门用于人工智能辅助中医舌诊的标准化舌像数据集,包含6719张在标准化条件下捕获的高质量图像,并标注了20种病理症状类别(平均每张图像有2.54个经过临床验证的标签,所有标签均由持有执照的中医执业医师验证)。数据集支持多种标注格式(COCO、TXT、XML),以方便广泛使用,并使用九种深度学习模型进行了基准测试,以展示其在人工智能开发中的实用性。该资源为推进可靠的中医计算工具提供了关键基础,填补了该领域的数据短缺,并通过标准化、高质量的诊断数据促进了人工智能在研究和临床实践中的整合。

arXiv 收录

GPQA

GPQA是一个由生物学、物理学和化学领域的专家编写的448个多选题数据集。该数据集的特点是问题质量高且极其困难,即使是具有博士学位或在读博士的专家也仅能达到65%的准确率,而高技能的非专家验证者仅有34%的准确率。数据集旨在用于研究未来AI系统在帮助解答非常困难问题时的可扩展监督方法,特别是在开发新科学知识时。

arXiv 收录

PASCAL VOC 2007

这个挑战的目标是从现实场景中的许多视觉对象类别中识别对象(即不是预先分割的对象)。它基本上是一个监督学习问题,因为它提供了一组标记图像的训练集。已选择的 20 个对象类别是: 人:人 动物:鸟、猫、牛、狗、马、羊 交通工具:飞机、自行车、船、公共汽车、汽车、摩托车、火车 室内:瓶子、椅子、餐桌、盆栽、沙发、电视/显示器 将有两个主要比赛和两个较小规模的“品酒师”比赛。内容:提供的训练数据由一组图像组成;每个图像都有一个注释文件,为图像中存在的 20 个类别之一中的每个对象提供一个边界框和对象类别标签。请注意,来自多个类的多个对象可能出现在同一图像中。

OpenDataLab 收录