five

Multi-spectral Object Detection|多光谱图像数据集|目标检测数据集

收藏
OpenDataLab2025-03-29 更新2024-05-09 收录
多光谱图像
目标检测
下载链接:
https://opendatalab.org.cn/OpenDataLab/Multi-spectral_Object_Detection
下载链接
链接失效反馈
资源简介:
多光谱图像对可以提供组合信息,使对象检测应用在开放世界中更加可靠和健壮。为了充分利用不同的模态,本文提出了一种简单而有效的跨模态特征融合方法,称为跨模态融合变压器 (CFT)。与以前基于CNNs的工作不同,我们的网络在Transformer方案的指导下,在特征提取阶段学习远程依赖关系并集成全局上下文信息。更重要的是,通过利用变压器的自我关注,网络可以自然地同时执行模态内和模态间融合,并可靠地捕获RGB和热域之间的潜在相互作用。从而大大提高了多光谱目标检测的性能。在多个数据集上进行的大量实验和消融研究表明,该方案是有效的,并获得了最先进的检测性能。我们的代码和模型可在https://github.com/DocF/多光谱-对象检测。
提供机构:
OpenDataLab
创建时间:
2022-11-18
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国裁判文书网

中国裁判文书网是中国最高人民法院设立的官方网站,旨在公开各级法院的裁判文书。该数据集包含了大量的法律文书,如判决书、裁定书、调解书等,涵盖了民事、刑事、行政、知识产权等多个法律领域。

wenshu.court.gov.cn 收录

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录

ActivityNet Captions

The ActivityNet Captions dataset is built on ActivityNet v1.3 which includes 20k YouTube untrimmed videos with 100k caption annotations. The videos are 120 seconds long on average. Most of the videos contain over 3 annotated events with corresponding start/end time and human-written sentences, which contain 13.5 words on average. The number of videos in train/validation/test split is 10024/4926/5044, respectively.

Papers with Code 收录

LibriSpeech

LibriSpeech 是一个大约 1000 小时的 16kHz 英语朗读语音语料库,由 Vassil Panayotov 在 Daniel Povey 的协助下编写。数据来自 LibriVox 项目的已读有声读物,并经过仔细分割和对齐。

OpenDataLab 收录

UniProt

UniProt(Universal Protein Resource)是全球公认的蛋白质序列与功能信息权威数据库,由欧洲生物信息学研究所(EBI)、瑞士生物信息学研究所(SIB)和美国蛋白质信息资源中心(PIR)联合运营。该数据库以其广度和深度兼备的蛋白质信息资源闻名,整合了实验验证的高质量数据与大规模预测的自动注释内容,涵盖从分子序列、结构到功能的全面信息。UniProt核心包括注释详尽的UniProtKB知识库(分为人工校验的Swiss-Prot和自动生成的TrEMBL),以及支持高效序列聚类分析的UniRef和全局蛋白质序列归档的UniParc。其卓越的数据质量和多样化的检索工具,为基础研究和药物研发提供了无可替代的支持,成为生物学研究中不可或缺的资源。

www.uniprot.org 收录