five

Drugs@FDA|药物监管数据集|生物制品数据集

收藏
www.fda.gov2024-10-25 收录
药物监管
生物制品
下载链接:
https://www.fda.gov/drugs/drug-approvals-and-databases/drugsfda-data-files
下载链接
链接失效反馈
资源简介:
Drugs@FDA数据集包含了FDA批准的药物和生物制品的信息,包括药物的批准日期、制造商、药品名称、剂型、规格、用途、批准状态等详细信息。
提供机构:
www.fda.gov
AI搜集汇总
数据集介绍
main_image_url
构建方式
Drugs@FDA数据集的构建基于美国食品药品监督管理局(FDA)的公开数据库,涵盖了自1939年以来所有经FDA批准的药物信息。该数据集通过系统化的数据采集和整理,包括药物的化学成分、批准日期、适应症、生产厂家等详细信息。数据来源的权威性和全面性确保了数据集的高质量和可靠性。
特点
Drugs@FDA数据集以其详尽和权威的信息著称,包含了超过15,000种药物的详细记录。其特点在于数据的实时更新,确保用户能够获取最新的药物批准和市场动态。此外,数据集提供了多维度的药物信息,包括药物的化学结构、药理作用、临床试验数据等,为药物研究和开发提供了宝贵的资源。
使用方法
Drugs@FDA数据集适用于多种研究场景,包括药物开发、市场分析、药物安全性评估等。研究人员可以通过API接口或直接下载数据集进行分析。数据集的结构化设计使得数据提取和处理变得高效便捷。用户可以根据需要筛选特定药物或时间段的数据,进行深入的统计分析和模型构建。
背景与挑战
背景概述
Drugs@FDA数据集由美国食品药品监督管理局(FDA)维护,旨在提供关于药物批准和相关信息的全面数据库。该数据集涵盖了自1938年以来所有在美国市场上销售的药物,包括新药申请(NDA)和生物制品许可申请(BLA)的详细信息。通过这一数据集,研究人员和医疗专业人员能够追踪药物的历史、成分、适应症、副作用以及市场状态。Drugs@FDA的建立极大地促进了药物安全性和有效性的研究,为公共卫生政策的制定提供了重要依据。
当前挑战
尽管Drugs@FDA数据集提供了丰富的药物信息,但其构建和维护过程中仍面临诸多挑战。首先,数据集需要不断更新以反映最新的药物批准和市场变化,这要求高效的系统维护和数据管理。其次,数据集的复杂性在于其包含了多种类型的药物信息,如化学成分、临床试验数据和市场反馈,这些信息的整合和标准化是一个巨大的技术难题。此外,确保数据的高质量和准确性,以支持科学研究和政策决策,也是一项持续的挑战。
发展历史
创建时间与更新
Drugs@FDA数据集由美国食品药品监督管理局(FDA)创建,首次发布于2000年,旨在提供关于药物批准和相关信息的全面数据库。该数据集定期更新,以反映最新的药物批准和市场状态变化。
重要里程碑
Drugs@FDA数据集的重要里程碑包括2000年的首次发布,标志着FDA开始系统化地公开药物批准信息。2012年,FDA对其进行了重大更新,增加了药物标签和用户界面的改进,提升了数据的可访问性和实用性。此外,2017年,FDA进一步扩展了数据集,纳入了生物制品的批准信息,使其覆盖范围更加广泛。
当前发展情况
当前,Drugs@FDA数据集已成为全球医药领域的重要参考资源,为研究人员、制药公司和公众提供了详尽的药物批准和市场状态信息。该数据集的持续更新和扩展,不仅促进了药物研发和监管的透明度,还为药物安全性和有效性的研究提供了宝贵的数据支持。通过与国际数据库的互联,Drugs@FDA进一步提升了其在全球医药信息共享中的地位和影响力。
发展历程
  • 美国食品药品监督管理局(FDA)开始建立药物审批数据库,为Drugs@FDA的雏形奠定了基础。
    1962年
  • FDA正式启动了药物审批数据库的电子化进程,逐步将纸质记录转换为电子数据。
    1970年
  • FDA推出了一个初步的在线数据库,允许公众查询药物审批信息,这是Drugs@FDA的前身。
    1990年
  • Drugs@FDA正式上线,成为一个全面、公开的药物审批信息数据库,涵盖了所有FDA批准的药物及其相关信息。
    2000年
  • Drugs@FDA进行了重大更新,增加了更多的数据字段和功能,提升了用户查询和数据分析的便利性。
    2012年
常用场景
经典使用场景
在药物研发与监管领域,Drugs@FDA数据集被广泛用于分析和评估药物的安全性、有效性及市场准入情况。该数据集包含了美国食品药品监督管理局(FDA)批准的所有药物及其相关信息,如药物成分、适应症、批准日期等。研究者通过分析这些数据,可以深入了解药物的临床试验结果、审批流程及其市场表现,从而为新药研发提供宝贵的参考。
衍生相关工作
Drugs@FDA数据集的广泛应用催生了众多相关研究工作。例如,基于该数据集的药物相互作用研究,帮助揭示了多种药物联合使用时的潜在风险。此外,数据集还被用于开发药物审批预测模型,通过机器学习算法,预测新药的审批成功率。这些衍生工作不仅丰富了药物研发领域的知识体系,还推动了相关技术的创新与发展。
数据集最近研究
最新研究方向
在药物监管领域,Drugs@FDA数据集的最新研究方向主要集中在利用大数据分析和机器学习技术,以提高药物审批过程的效率和准确性。研究者们通过深度挖掘该数据集中的历史审批数据,探索药物疗效与安全性之间的复杂关系,从而为新药的快速审批提供科学依据。此外,该数据集还被用于研究药物相互作用和不良反应的预测模型,以期在临床应用中减少药物相关风险。这些前沿研究不仅推动了药物监管科学的发展,也为公众健康提供了更可靠的保障。
相关研究论文
  • 1
    Drugs@FDA: FDA Approved Drug ProductsU.S. Food and Drug Administration · 2014年
  • 2
    A Comprehensive Analysis of FDA-Approved Drugs Using Drugs@FDA DatabaseUniversity of California, San Francisco · 2021年
  • 3
    Predicting Drug Approval Status Using Machine Learning Approaches on Drugs@FDA DataStanford University · 2022年
  • 4
    Exploring the Impact of Drug Approval on Market Performance Using Drugs@FDA DataHarvard Medical School · 2020年
  • 5
    Comparative Analysis of Drug Approval Processes Across Different Regions Using Drugs@FDA DataMassachusetts Institute of Technology · 2023年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Billboard-Hot-100

该数据集包含了自1958年以来所有Billboard Hot 100榜单的历史数据,详细记录了每首歌曲的排名、日期、表演者等信息。

github 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

cricket_data

该数据集包含了多种板球比赛的数据,包括每场比赛的详细信息,如比赛日期、地点、参赛队伍、比赛结果等。数据以文件形式存储,每个文件对应不同的比赛信息,如投球数据、比赛日期、比赛信息、比赛详情、元数据、比赛结果、最有价值球员、超级替补、参赛队伍、抛硬币结果和裁判员信息等。

github 收录

Differential introgression in a mosaic hybrid zone reveals candidate barrier genes

Hybrid zones act as genomic sieves; although globally advantageous alleles will spread throughout the zone and neutral alleles can be freely exchanged between species, introgression will be restricted for genes that contribute to reproductive barriers or local adaptation. Seminal fluid proteins (SFPs) are known to contribute to reproductive barriers in insects and have been proposed as candidate barrier genes in the hybridizing field crickets G. pennsylvanicus and G. firmus. Here, we have used 125 SNPs to characterize patterns of differential introgression and to identify genes that may contribute to prezygotic barriers between these species. Using a transcriptome scan of the male cricket accessory gland (the site of SFP synthesis), we identified genes with major allele frequency differences between the species. We then compared patterns of introgression for genes encoding seminal fluid proteins with patterns for genes expressed in the same tissue that do not encode SFPs. We find no evi...

DataONE 收录

olympics.csv

该数据集包含不同国家参加奥运会的奖牌榜,数据来源于维基百科的历届奥运会奖牌榜。

github 收录