five

Patterns discovery dataset for particulate matter (pm2.5) pollution trends in Japan|空气污染监测数据集|模式挖掘数据集

收藏
DataCite Commons2025-05-01 更新2025-04-09 收录
空气污染监测
模式挖掘
下载链接:
https://datadryad.org/dataset/doi:10.5061/dryad.hhmgqnkrr
下载链接
链接失效反馈
资源简介:
Air pollution presents a significant environmental risk, impacting human health, accelerating climate change, and disrupting ecosystems. The main aim of air pollution research is to pinpoint the most harmful pollutants identified in previous studies and to map regions exposed to high pollution levels. This study introduces a large-scale, high-quality dataset to advance the analysis of PM2.5 pollution and reveal hidden patterns through pattern mining techniques. The dataset covers five years of hourly PM2.5 measurements collected from approximately 1,900 sensors across Japan, sourced from the Ministry of the Environment's Soramame platform. This platform offers hourly pollutant records, downloadable as monthly raw data files. The unorganised raw data files are systematically organised and stored in database tables using an Entity-Relationship (ER) schema. The primary objective of this dataset is to aid in developing and validating pattern mining models, enabling the accurate detection of frequent patterns within the PM2.5 dataset under diverse conditions. The dataset collection includes the "FINAL_DATASET" CSV file containing timestamps, sensor location IDs, and recorded PM2.5 values. Due to storage limitations, raw data files are excluded from the compressed ZIP (AEROS) file but can be accessed directly via the link provided in the README (Data). By revealing complex patterns, this dataset is a valuable resource for researchers employing pattern mining techniques in PM2.5 analysis. Publicly sharing this dataset promotes collaboration and advances efforts to identify frequently polluted sensors or regions. Researchers are invited to use and contribute to the dataset, broadening its relevance and potential impact.
提供机构:
Dryad
创建时间:
2024-12-12
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域地面气象要素驱动数据集 v2.0(1951-2024)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 74 年(1951~2024 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 74 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。

国家青藏高原科学数据中心 收录

Chinese-Poetry-Corpus

本语料库收集自互联网,包含了从先秦到当代的古诗词数据,以CSV格式进行存储。经过去重后,包含诗词共计1014508首。古诗词按朝代进行划分,存储于文件夹下,命名规则为朝代.csv。每首诗词数据包含五个字段,分别为标题、朝代、作者、体裁、内容。

github 收录

SWaT Dataset

SWaT Dataset是一个用于工业控制系统(ICS)安全研究的数据集,包含了模拟的网络攻击和正常操作的数据。该数据集由新加坡科技设计大学(Singapore University of Technology and Design)发布,旨在帮助研究人员开发和测试用于检测工业控制系统中网络攻击的算法和模型。

itrust.sutd.edu.sg 收录

海天瑞声-超大规模中文多领域高质量多轮对话语料库

这是一个符合中国人表达习惯的自然对话数据集,共计约1,0000,000轮,上亿级token,包含正式&非正式风格对话,使用偏口语化自然表达。覆盖工作、生活、校园等场景,及金融、教育、娱乐、体育、汽车、科技等领域。在数据集构成上,DOTS-NLP-216包含了对真实场景的对话采集,及高度还原真实场景的模拟对话这两种方式,兼顾分布的代表性、多样性和样本规模。

魔搭社区 收录

Breast Cancer Dataset

该项目专注于清理和转换一个乳腺癌数据集,该数据集最初由卢布尔雅那大学医学中心肿瘤研究所获得。目标是通过应用各种数据转换技术(如分类、编码和二值化)来创建一个可以由数据科学团队用于未来分析的精炼数据集。

github 收录