five

"Table 661" of "Differential $t\bar{t}$ cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb$^{-1}$ of ATLAS data"

收藏
Mendeley Data2024-06-25 更新2024-06-29 收录
下载链接:
https://www.hepdata.net/record/137240
下载链接
链接失效反馈
资源简介:
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 TeV proton--proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\rm T}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t}\rightarrow WWb\bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\rm T}$ > 500 GeV and $p_{\rm T}$ > 350 GeV, respectively, is $331 \pm 3 \rm{(stat.)} \pm 39 \rm{(syst.)}$ fb. This is approximately 20% lower than the prediction of $398^{+48}_{-49}$ fb by POWHEG+PYTHIA8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \rm{(stat.)} \pm 0.25 \rm{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Asteroids by the Minor Planet Center

包含所有已知小行星的轨道数据和观测数据。数据来源于Minor Planet Center,格式包括Fortran (.DAT)和JSON,数据集大小为81MB(压缩)和450MB(未压缩),记录数约750,000条,每日更新。

github 收录

yahoo-finance-data

该数据集包含从Yahoo! Finance、Nasdaq和U.S. Department of the Treasury获取的财务数据,旨在用于研究和教育目的。数据集包括公司详细信息、高管信息、财务指标、历史盈利、股票价格、股息事件、股票拆分、汇率和每日国债收益率等。每个数据集都有其来源、简要描述以及列出的列及其数据类型和描述。数据定期更新,并以Parquet格式提供,可通过DuckDB进行查询。

huggingface 收录

Billboard-Hot-100

该数据集包含了自1958年以来所有Billboard Hot 100榜单的历史数据,详细记录了每首歌曲的排名、日期、表演者等信息。

github 收录

TSOD10K

TSOD10K是首个大规模的交通显著目标检测数据集,由湖南师范大学信息科学与工程学院、南开大学人工智能学院和湖南大学机器人学院共同创建。该数据集包含13753张车辆捕获的图像,并带有像素级的精确注释。TSOD10K覆盖了各种真实世界交通场景,包括城市交叉口、高速公路、乡村道路和停车场,涵盖了雨、雪、雾、晴、低光等不同的天气/光照组合。数据集旨在支持动态风险分层下游服务,特别编码了视觉显著性和隐含的风险语义。

arXiv 收录

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录