five

"Table 661" of "Differential $t\bar{t}$ cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb$^{-1}$ of ATLAS data"

收藏
Mendeley Data2024-06-25 更新2024-06-29 收录
下载链接:
https://www.hepdata.net/record/137240
下载链接
链接失效反馈
资源简介:
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 TeV proton--proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\rm T}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t}\rightarrow WWb\bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\rm T}$ > 500 GeV and $p_{\rm T}$ > 350 GeV, respectively, is $331 \pm 3 \rm{(stat.)} \pm 39 \rm{(syst.)}$ fb. This is approximately 20% lower than the prediction of $398^{+48}_{-49}$ fb by POWHEG+PYTHIA8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \rm{(stat.)} \pm 0.25 \rm{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

N-MNIST (Neuromorphic-MNIST)

简要说明 Neuromorphic-MNIST (N-MNIST) 数据集是原始基于帧的 MNIST 数据集的尖峰版本。它由与原始 MNIST 数据集相同的 60 000 个训练样本和 10 000 个测试样本组成,并以与原始 MNIST 数据集(28x28 像素)相同的视觉比例捕获。 N-MNIST 数据集是通过将 ATIS 传感器安装在电动云台装置上并让传感器在 LCD 监视器上查看 MNIST 示例时移动来捕获的,如本视频所示。可以在下面的论文中找到对数据集及其创建方式的完整描述。如果您使用数据集,请引用本文。果园,G。科恩,G。贾亚万特,A。和 Thakor, N. “Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades”,《神经科学前沿》,第 9 卷,第 437 期,2015 年 10 月

OpenDataLab 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录

哈尔滨市区域产业链点发展评估数据

我司基于哈尔滨市区域产业发展的特征,结合数据的可获得性和有效性,基于不同产业链点的产业规模、龙头效应、资本热度、科技创新、发展效率等多个维度构建哈尔滨市区域产业链点的综合发展效能评估体系,并完成数据收集、数据清洗、特征衍生、模型构建、模型验证全过程,形成涵盖哈尔滨市主要产业链下核心链点的区域产业链点发展评分,能有效帮助金融机构在制定产业相关信贷政策以及确定特定产业预授信额度时,更准确全面地评价区域产业的发展效能和动态变化,辅助金融机构更好做好区域产业金融服务。区域产业链点发展指数 = ∑ Si * Xi ,其中Si是指标相应的权重系数,Xi是评价指标,i=1,2,3,……,21,21个指标包括“区域产业链点在营企业数量”“区域产业链点近1年新注册企业数量”等,指标经归一化处理后参与计算。模型结合专家经验和机器学习算法得出,专家主要基于行业实践、政策导向和国际贸易特点,帮助筛选关键指标并初步设定权重范围,然后通过主成分分析和随机森林算法进一步筛选指标并对初始权重进行优化。

浙江省数据知识产权登记平台 收录

PASCAL VOC 2007

这个挑战的目标是从现实场景中的许多视觉对象类别中识别对象(即不是预先分割的对象)。它基本上是一个监督学习问题,因为它提供了一组标记图像的训练集。已选择的 20 个对象类别是: 人:人 动物:鸟、猫、牛、狗、马、羊 交通工具:飞机、自行车、船、公共汽车、汽车、摩托车、火车 室内:瓶子、椅子、餐桌、盆栽、沙发、电视/显示器 将有两个主要比赛和两个较小规模的“品酒师”比赛。内容:提供的训练数据由一组图像组成;每个图像都有一个注释文件,为图像中存在的 20 个类别之一中的每个对象提供一个边界框和对象类别标签。请注意,来自多个类的多个对象可能出现在同一图像中。

OpenDataLab 收录