five

Extubation strategies after esophageal atresia repair data

收藏
Mendeley Data2024-01-31 更新2024-06-27 收录
下载链接:
https://data.mendeley.com/datasets/th2pp439yx
下载链接
链接失效反馈
资源简介:
Extubation strategies after esophageal atresia repair data
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

PRBench

PRBench是一个大规模专家标注的专业领域高风险推理基准测试数据集,当前版本覆盖法律和金融领域。包含1,100个专家编写的跨金融和法律领域的对话,19,356个专家策划的评估标准(每个任务10-30条),覆盖114个国家、47个美国司法管辖区和25个专业主题,并包含最具挑战性任务的硬子集(Finance-300, Legal-250)。

github 收录

核电厂焊缝射线质量智能评定模型数据

1.对核电厂焊缝射线质量、缺陷进行智能精准识别与评定,为核电厂焊缝射线质量智能评定模型提供训练数据,提高核电厂焊缝射线评定标准的准确性,进一步提升核电厂焊缝射线质量。 2.能够为核电厂焊缝质量控制提供决策依据,通过焊缝质量、缺陷训练数据持续优化模型检测标准,进一步保障核电站设备安全和长期稳定运行。数据收集和处理: 步骤1数据收集:方式一:通过使用数字射线检测设备采集获取原始焊缝图像数据;方式二:通过高分辨率扫描设备对传统射线底片影像数据转化为原始焊缝图像数据。 步骤2数据处理:对收集到的原始焊缝图像数据进行图像预处理,去除图像噪声、矫正图像畸变,统一图像尺寸(将图像的高度(imageHeight)和宽度(imageWidth)统一为3580×780(像素),确保原始焊缝图像数据质量和一致性。 步骤3数据标注:使用图像标注工具对原始焊缝图像数据的Filename(文件名)、Shapes(形状)、imagePath(路径)、imageData(图像数据)、imageHeight(图像高度)、imageWidth(图像宽度)等字段进行数据标注。其中:Filename(文件名)按照image_XXX.json按序号依次标注;Shapes(形状)字段中的label(标签)用于标注缺陷类型,缺陷类型标签包括5个缺陷等级:liewen(裂纹)、qikong(气孔)、jiazha(夹渣)、weironghe(未熔合)、weihantou(未焊透),points(位置)用于标记缺陷在图像中的位置,通过坐标的形式进行标注,shape_type(形状类型)为用于框选缺陷的形状,在本数据标注过程中均使用rectangle(矩形)框进行框选,在同一个焊缝图像数据中可能存在多个缺陷,在进行数据标注的过程中Shapes(形状)可能包含多个缺陷;imagePath(路径)用于标记生成标注文件的存储位置,存储在图像的同一路径(文件夹)下;imageData(图像数据)为对通过数据收集阶段获取到的原始焊缝图像数据进行标注,按照image_XXX.tiff进行命名存储;对图像高度(imageHeight)和宽度(imageWidth)分别标注为3580和780。通过以上数据标注过程确保为后续模型训练提供高质量的标注数据。 通过使用核电厂焊缝射线质量智能评定模型数据能够构建例如:卷积神经网络(CNN)的自动识别模型,实现核电厂焊缝射线图像缺陷的自动识别并和缺陷类型的标注,辅助人工评定工作,提升检测效率和准确度。

浙江省数据知识产权登记平台 收录

MNBVC

MNBVC数据集是一个超大规模的中文语料集,包括新闻、作文、小说、书籍、杂志、论文、台词、帖子、wiki、古诗、歌词、商品介绍、笑话、糗事、聊天记录等一切形式的纯文本中文数据。数据集不但包括主流文化,也包括各个小众文化甚至火星文的数据。

github 收录

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

OpenML-CC18

我们提倡使用经过整理的、全面的机器学习数据集基准测试套件,以标准化的基于 OpenML 的接口和用 Python、Java 和 R 编写的互补软件工具包为后盾。我们展示了如何使用标准化的基于 OpenML 的基准测试套件轻松执行全面的基准测试研究以及用 Python、Java 和 R 编写的互补软件工具包。 OpenML 基准测试套件的主要显着特点是 (i) 通过标准化数据格式、API 和现有客户端库易于使用; (ii) 关于套件内容的机器可读元信息; (iii) 在线共享结果,实现大规模比较。作为第一个这样的套件,我们提出了 OpenML-CC18,这是一个机器学习基准套件,包含 72 个分类数据集,从 OpenML 上的数千个数据集中精心策划。纳入标准是: * 密集数据集独立观察的分类任务 * 类数 >= 2,每个类至少有 20 个观察和少数类与多数类的比例必须超过 5% * 500 <= 观察数 <= 100000 * one-hot-encoding 后的特征数量 < 5000 * 没有人工数据集 * 没有更大数据集的子集,也没有其他数据集的二值化 * 没有可以通过使用单个特征或使用简单的决策树来完全预测的数据集* 来源或参考可用 如果您使用此基准测试套件,请引用:Bernd Bischl、Giuseppe Casalicchio、Matthias Feurer、Frank Hutter、Michel Lang、Rafael G. Mantovani、Jan N. van Rijn 和 Joaquin Vanschoren。 “OpenML 基准测试套件”arXiv:1708.03731v2 [stats.ML] (2019)。 @article{oml-benchmarking-suites, title={OpenML Benchmarking Suites}, author={Bernd Bischl and Giuseppe Casalicchio and Matthias Feurer and Frank Hutter and Michel Lang and Rafael G. Mantovani and Jan N. van Rijn and Joaquin Vanschoren},年={2019},日记={arXiv:1708.03731v2 [stat.ML]} }

OpenDataLab 收录