five

thu-coai/lccc|中文对话数据集|数据清洗数据集

收藏
hugging_face2024-01-18 更新2024-05-25 收录
中文对话
数据清洗
下载链接:
https://hf-mirror.com/datasets/thu-coai/lccc
下载链接
链接失效反馈
资源简介:
LCCC: Large-scale Cleaned Chinese Conversation corpus (LCCC) 是一套来自于中文社交媒体的对话数据,我们设计了一套严格的数据过滤流程来确保该数据集中对话数据的质量。 这一数据过滤流程中包括一系列手工规则以及若干基于机器学习算法所构建的分类器。 我们所过滤掉的噪声包括:脏字脏词、特殊字符、颜表情、语法不通的语句、上下文不相关的对话等。

LCCC: Large-scale Cleaned Chinese Conversation corpus (LCCC) 是一套来自于中文社交媒体的对话数据,我们设计了一套严格的数据过滤流程来确保该数据集中对话数据的质量。 这一数据过滤流程中包括一系列手工规则以及若干基于机器学习算法所构建的分类器。 我们所过滤掉的噪声包括:脏字脏词、特殊字符、颜表情、语法不通的语句、上下文不相关的对话等。
提供机构:
thu-coai
原始信息汇总

数据集概述

数据集名称: LCCC: Large-scale Cleaned Chinese Conversation corpus

数据集简介: LCCC是一个大规模的中文对话语料库,源自中文社交媒体。通过一套严格的数据清洗流程,确保了语料库的质量。该流程包括一系列手工规则和多个基于机器学习算法的分类器,用于过滤掉脏字脏词、特殊字符、颜表情、语法不通的语句、上下文不相关的对话等噪声。

语言: 中文

许可: MIT License

多语言性: 单语种

任务类别: 对话生成

数据集大小:

  • LCCC-large: 1530827965字节,12007759个实例
  • LCCC-base: 937055849字节,包含6820506个训练实例,20000个验证实例和10000个测试实例

数据集结构:

  • 数据字段: dialog (列表,字符串类型),包含对话中的多个语句。
  • 数据分割: LCCC-base提供官方分割,包括训练集、验证集和测试集。

使用许可:

  • 该数据集根据MIT许可证发布,允许自由使用、复制、修改、合并、出版、分发、转授和/或出售软件副本,但需包含版权声明和许可声明。

引用信息: bibtex @inproceedings{wang2020chinese, title={A Large-Scale Chinese Short-Text Conversation Dataset}, author={Wang, Yida and Ke, Pei and Zheng, Yinhe and Huang, Kaili and Jiang, Yong and Zhu, Xiaoyan and Huang, Minlie}, booktitle={NLPCC}, year={2020}, url={https://arxiv.org/abs/2008.03946} }

AI搜集汇总
数据集介绍
main_image_url
构建方式
LCCC数据集的构建过程体现了对数据质量的严格把控。该数据集源自中文社交媒体,通过设计一套复杂的数据清洗流程,确保了对话内容的高质量。这一流程结合了手工规则与基于机器学习算法的分类器,有效过滤了包括脏字脏词、特殊符号、颜表情、语法错误及上下文不连贯的对话等噪声。
使用方法
LCCC数据集主要用于训练和评估对话生成模型。研究人员可以利用该数据集来开发能够生成自然流畅对话的AI系统。此外,该数据集也适用于训练响应检索模型,通过检索最合适的对话响应来增强对话系统的交互能力。使用该数据集时,建议遵循其提供的训练、验证和测试集划分,以确保模型评估的准确性和公正性。
背景与挑战
背景概述
LCCC(Large-scale Cleaned Chinese Conversation corpus)是由清华大学自然语言处理与社会人文计算实验室(THU-COAI)于2020年发布的大规模中文对话语料库。该数据集旨在为中文对话生成和响应检索任务提供高质量的语料支持。LCCC的语料来源于中文社交媒体,经过严格的数据清洗流程,过滤了包括敏感词汇、特殊符号、表情符号、语法错误及不连贯对话在内的多种噪声。该数据集的发布为中文自然语言处理领域的研究提供了重要的资源,尤其是在对话生成和检索任务中展现了显著的影响力。
当前挑战
LCCC数据集在构建过程中面临的主要挑战包括数据清洗的复杂性和语料质量的保证。由于社交媒体数据的多样性和噪声较多,设计一套高效且全面的清洗流程成为关键。此外,如何在不损失对话连贯性和自然性的前提下,过滤掉不相关或低质量的内容,也是一个技术难点。在应用层面,尽管LCCC为对话生成和响应检索任务提供了丰富的语料,但如何有效利用这些数据训练出能够生成自然、连贯对话的模型,仍然是一个亟待解决的问题。此外,数据集中可能存在的潜在偏见和敏感信息也需要进一步研究和处理。
常用场景
经典使用场景
LCCC数据集广泛应用于中文对话生成任务中,特别是在训练生成式对话模型时,其大规模且经过严格清洗的对话数据为模型提供了丰富的语境和多样化的表达方式。研究者可以利用该数据集训练模型,使其能够生成自然流畅的中文对话回复,从而提升对话系统的用户体验。
解决学术问题
LCCC数据集解决了中文对话生成领域中的关键问题,即缺乏高质量、大规模的对话语料。通过严格的清洗流程,该数据集有效去除了噪声数据,如敏感词汇、语法错误和不连贯的对话,为研究者提供了一个干净且多样化的训练环境。这不仅推动了对话生成模型的性能提升,还为中文自然语言处理领域的研究提供了坚实的基础。
实际应用
在实际应用中,LCCC数据集被广泛用于开发智能客服、虚拟助手和社交机器人等对话系统。基于该数据集训练的模型能够生成符合语境的中文回复,显著提升了用户与系统交互的自然度和流畅性。此外,该数据集还被用于教育领域,帮助开发语言学习工具,提升学习者的中文对话能力。
数据集最近研究
最新研究方向
在自然语言处理领域,对话生成技术一直是研究的热点之一。LCCC数据集作为大规模中文对话语料库,为对话生成和响应检索任务提供了丰富的数据支持。近年来,基于LCCC的研究主要集中在提升对话系统的上下文理解能力和生成质量。通过引入预训练语言模型如GPT和BERT,研究者们能够更好地捕捉对话中的语义信息,从而生成更加连贯和自然的对话内容。此外,LCCC还被广泛应用于多轮对话系统的开发,特别是在社交机器人和客服系统中,其高质量的数据为模型训练提供了坚实的基础。随着中文自然语言处理技术的不断进步,LCCC数据集在推动中文对话系统的发展中扮演着越来越重要的角色。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

全国 1∶200 000 数字地质图(公开版)空间数据库

As the only one of its kind, China National Digital Geological Map (Public Version at 1∶200 000 scale) Spatial Database (CNDGM-PVSD) is based on China' s former nationwide measured results of regional geological survey at 1∶200 000 scale, and is also one of the nationwide basic geosciences spatial databases jointly accomplished by multiple organizations of China. Spatially, it embraces 1 163 geological map-sheets (at scale 1: 200 000) in both formats of MapGIS and ArcGIS, covering 72% of China's whole territory with a total data volume of 90 GB. Its main sources is from 1∶200 000 regional geological survey reports, geological maps, and mineral resources maps with an original time span from mid-1950s to early 1990s. Approved by the State's related agencies, it meets all the related technical qualification requirements and standards issued by China Geological Survey in data integrity, logic consistency, location acc racy, attribution fineness, and collation precision, and is hence of excellent and reliable quality. The CNDGM-PVSD is an important component of China' s national spatial database categories, serving as a spatial digital platform for the information construction of the State's national economy, and providing informationbackbones to the national and provincial economic planning, geohazard monitoring, geological survey, mineral resources exploration as well as macro decision-making.

DataCite Commons 收录

CMAB

CMAB数据集由清华大学创建,是中国首个全国范围的多属性建筑数据集,涵盖了3667个自然城市,总面积达213亿平方米。该数据集通过集成多源数据,如高分辨率Google Earth影像和街景图像,生成了建筑的屋顶、高度、功能、年龄和质量等属性。数据集的创建过程结合了地理人工智能框架和机器学习模型,确保了数据的高准确性。CMAB数据集主要应用于城市规划和可持续发展研究,旨在提供详细的城市3D物理和社会结构信息,支持城市化进程和政府决策。

arXiv 收录

中国区域地面气象要素驱动数据集 v2.0(1951-2020)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 70 年(1951~2020 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 70 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。CMFD 2.0 的数据内容与此前宣传的 CMFD 1.7 基本一致,仅对 1983 年 7 月以后的向下短/长波辐射通量数据进行了更新,以修正其长期趋势存在的问题。2021 年至 2024 年的 CMFD 数据正在制作中,计划于 2025 年上半年发布,从而使 CMFD 2.0 延伸至 2024 年底。

国家青藏高原科学数据中心 收录