five

Precipitation - BES rain gauge network

收藏
Mendeley Data2024-01-31 更新2024-06-28 收录
下载链接:
https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-bes.3110.170
下载链接
链接失效反馈
资源简介:
Abstract: Rain depth is collected using model 6011-A tipping bucket rain gauges manufactured by All Weather Inc. (formerly Qualimetrics). Two raingauges (RG1 and RG2) are installed at each of eight stations. Each rain gauge tip represents a depth of 0.01 inches of rainfall. Data are recorded by a data logger at the station and telemetered hourly to UMBC, where the data are stored in a data base. The rain gauges are not heated and therefore snow and ice storms are removed from the published record. The QA/QC procedure applied to the raw data includes removal of false tips and snow/ice events, accumulating tip data to a time series in inches/min, applying a laboratory-based calibration curve to the data, and converting corrected data to a one-minute time series in units of mm/min for publication. Type of instrument: Tipping bucket rain gauge Manufacturer: All Weather Inc. (formerly Qualimetrics Inc.) http://www.allweatherinc.com/ Model number: 6011-A Orifice opening: 8 in diameter (20 cm) Sensitivity: 0.01 in (0.25 mm) Manufacturer's specified calibrated accuracy: +/-0.5% at 0.5 in/hr. Manufacturer's specified repeatability: +/-3% Station information Each of eight stations consists of two tipping bucket rain gauges, a data logger (Campbell Scientific CR10X), a power source (10 W solar panel, solar controller, 12V 42 amp-hr battery), and a device for data transmission (Sierra Wireless AirLink Raven RV50). A contract is held with AT+T for data transmission. Raw data (time stamps of 0.01 inch tips) are recorded to the data logger and transmitted hourly via the Raven to University of Maryland, Baltimore County (UMBC) and stored in a data base at UMBC. Data streaming into UMBC are checked after every storm. Raw data can be viewed online at http://his10.umbc.edu/Precip/. If a station fails to transmit data, the station is visited after a storm for troubleshooting. Otherwise, stations are visited every 60 days to remove debris and trim weeds, check wiring and moving parts, clean solar panels, and remove any spider webs and insect nests. The rain gauges are not heated and therefore do not accurately record precipitation during snow and ice events. The rain gauges are deployed at locations listed in Table 1. The following QA/QC procedure is applied to the raw data to prepare for publication. (1) False tips are removed from the records; (2) snow and ice events are removed from the records; (3) a script is applied to the raw data to (a) accumulate the data to one-minute increments to derive a rain-rate time series; (b) apply a laboratory-derived calibration curve to the rain-rate time series, where a calibration is unique to a rain gauge; and � convert the data to desired units for publication (e.g., mm/min). Station name Station ID serial number* RG2 serial number* Carrie Murray Nature Center, WXCMNC, 2821, 2238 Carroll Park Golf Course, WXCPGC, 2244, 2494 Dead Run near Catonsville, WXDRNC, 2473 , 2486 Glyndon Elementary School, WXGFGL, 2126, 2255 Gwynns Falls Near Delight , WXGFND , 2157, 2168 McDonogh School , WXMCDO, 2231 , 2248 Oregon Ridge Park, WXORDG, ,2250 , 2124 UMBC Campus , WXUMBC, 2252 , 2873 * Deployment locations as of 12/31/2017 For further information contact: Claire Welty, UMBC, weltyc@umbc.edu Locations Carrie Murray Nature Center, 39d18m26.09sN, 76d41m42.26sW Carroll Park Golf Course , 39d16m24.93sN, 76d38m54.91sW Dead Run Near Catonsville (DR5), 39d17m45.19sN, 76d44m38.50sW Glyndon Elementary School, 39d28m05.60sN, 76d48m37.80sW Gywnns Falls Near Delight , 39d26m38.01sN, 76d46m57.61sW McDonogh School, 39d23m46.81sN, 76d46m17.07sW Oregon Ridge Park , 39d29m47.65sN, 76d41m20.42sW UMBC, 39d15m15.48sN, 76d42m08.42sW
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

Nexdata/chinese_dialect

该数据集包含25,000小时的中文方言语音数据,收集自多个方言区域的本地方言使用者,涵盖闽南语、粤语、四川话、河南话、东北话、上海话、维吾尔语和藏语等。数据格式为16kHz、16bit、未压缩的wav文件,单声道。句子准确率超过95%。数据集支持的任务包括自动语音识别(ASR)和音频说话人识别。

hugging_face 收录

DeepFashion

DeepFashion数据集是一个大规模的时尚识别和检索数据集,包含289,222张多样化的衣物图像,以及详细的边界框、时尚地标、类别和属性标注。该数据集由多媒体实验室,香港中文大学开发,用于支持非商业研究及教育目的。

github 收录

HotpotQA

HotpotQA 是收集在英语维基百科上的问答数据集,包含大约 113K 众包问题,这些问题的构建需要两篇维基百科文章的介绍段落才能回答。数据集中的每个问题都带有两个黄金段落,以及这些段落中的句子列表,众包工作人员认为这些句子是回答问题所必需的支持事实。 HotpotQA 提供了多种推理策略,包括涉及问题中缺失实体的问题、交叉问题(什么满足属性 A 和属性 B?)和比较问题,其中两个实体通过一个共同属性进行比较等。在少文档干扰设置中,QA 模型有 10 个段落,保证能找到黄金段落;在开放域全维基设置中,模型只给出问题和整个维基百科。模型根据其答案准确性和可解释性进行评估,其中前者被测量为具有完全匹配 (EM) 和 unigram F1 的预测答案和黄金答案之间的重叠,后者关注预测的支持事实句子与人类注释的匹配程度(Supporting Fact EM/F1)。该数据集还报告了一个联合指标,它鼓励系统同时在两项任务上表现良好。 来源:通过迭代查询生成回答复杂的开放域问题

OpenDataLab 收录