five

Street view of the sixth department Asakusa, Tokyo, Japan, ca. 1920-1940

收藏
Mendeley Data2024-01-31 更新2024-06-27 收录
下载链接:
https://digitallibrary.usc.edu/asset-management/2A3BF1AGKWGH
下载链接
链接失效反馈
资源简介:
Photographic postcard of "the bustle in the six department, Asakusa," in Tokyo, Japan. Two story buildings line both sides of the steet. People are walking in both directions down the middle of the street. Long poles with flags hanging on them are attached to the building on both sides. There is a man walking down the street toward the bottom with a bicycle.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

MNBVC

MNBVC数据集是一个超大规模的中文语料集,包括新闻、作文、小说、书籍、杂志、论文、台词、帖子、wiki、古诗、歌词、商品介绍、笑话、糗事、聊天记录等一切形式的纯文本中文数据。数据集不但包括主流文化,也包括各个小众文化甚至火星文的数据。

github 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

Electrical-Lines-Defect-Detection

该数据集是针对电力线路缺陷检测的,包含了由APEPDCL线路工人使用移动相机捕获的图片,并由Sampath Balaji团队整理。数据集以CC BY 4.0许可证发布,旨在促进开源合作、可重现性和人工智能的实践学习。数据集分为两个模块:目标检测和分类。目标检测模块遵循YOLOv12格式,分类模块由文件夹和CSV文件组成,都提供了训练、验证和测试数据集。

huggingface 收录

Pima Indians Diabetes Database

该项目使用的数据集是Pima Indians Diabetes Database,来源于UCI机器学习库。该数据集包含多个医学预测变量和一个目标变量,即Outcome,用于指示患者是否患有糖尿病(1)或未患(0)。

github 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录