five

Phytochemical management of root knot nematode (Meloidogyne incognita) kofoid and white chitwood by Artemisia spp. in tomato (Lycopersicon esculentum L.)

收藏
Mendeley Data2024-06-25 更新2024-06-27 收录
下载链接:
https://scielo.figshare.com/articles/Phytochemical_management_of_root_knot_nematode_Meloidogyne_incognita_kofoid_and_white_chitwood_by_Artemisia_spp_in_tomato_Lycopersicon_esculentum_L_/11314706/1
下载链接
链接失效反馈
资源简介:
Abstract In vitro and screen house experiments were conducted to investigate the effectiveness of thirteen phytochemicals from Artemisia elegantissimia and A. incisa on root knot nematode, Meloidogyne incognita in tomato (Lycopersicon esculentum L.) cv. Rio Grande. A positive control (Carbofuran) and negative control (H2O) were also used for comparison. Effectiveness of phytochemicals against juveniles (J2s) mortality and egg hatch inhibition were evaluated after 24, 48 and 72 hours of incubation at three concentrations viz; 0.1, 0.2 and 0.3 mg/mL in vitro conditions. Amongst thirteen phytochemicals, Isoscopletin (Coumarin), Carbofuran and Apigenin (Flavonoid) showed the highest mortality and egg hatch inhibition of M. incognita at all intervals. Inhibition of eggs and J2s mortality were the greatest (90.0%) and (96.0%) at 0.3 mg/mL concentration. Application of phytochemicals caused reduction in number of galls, galling index, and egg masses on tomato plant and enhanced plant growth parameters under screen house conditions. Gall numbers (1.50), galling index (1.00), number of juveniles (4.83) and egg masses (4.00) were greatly reduced and plant growth parameters such as; plant height (28.48 cm), fresh (72.13 g) and dry shoot weights (35.99 g), and root fresh (6.58 g) and dry weights (1.43 g) were increased significantly by using Isoscopletin. In structure activity relationship, juveniles of M. incognita, exhibited variations in their shape and postures upon death when exposed to different concentrations of phytochemicals of Artemisia spp. The present study suggests that Artemisia based phytochemicals possess strong nematicidal effects and can be used effectively in an integrated disease management program against root knot nematodes.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

The MaizeGDB

The MaizeGDB(Maize Genetics and Genomics Database)是一个专门为玉米(Zea mays)基因组学研究提供数据和工具的在线资源。该数据库包含了玉米的基因组序列、基因注释、遗传图谱、突变体信息、表达数据、以及与玉米相关的文献和研究工具。MaizeGDB旨在支持玉米遗传学和基因组学的研究,为科学家提供了一个集成的平台来访问和分析玉米的遗传和基因组数据。

www.maizegdb.org 收录

垃圾分类数据集

华为云垃圾分类训练集:分为训练集和测试集,训练集为原华为云垃圾分类比赛数据集,测试集为另外添加图片。大致分为4类,"0": "其他垃圾/一次性快餐盒", "1": "其他垃圾/污损塑料", "2": "其他垃圾/烟蒂", "3": "其他垃圾/牙签", "4": "其他垃圾/破碎花盆及碟碗", "5": "其他垃圾/竹筷", 1 "6": "厨余垃圾/剩饭剩菜", "7": "厨余垃圾/大骨头", "8": "厨余垃圾/水果果皮", "9": "厨余垃圾/水果果肉", "10": "厨余垃圾/茶叶渣", "11": "厨余垃圾/菜叶菜根", "12": "厨余垃圾/蛋壳", "13": "厨余垃圾/鱼骨", 2 "14": "可回收物/充电宝", "15": "可回收物/包", "16": "可回收物/化妆品瓶", "17": "可回收物/塑料玩具", "18": "可回收物/塑料碗盆", "19": "可回收物/塑料衣架", "20": "可回收物/快递纸袋", "21": "可回收物/插头电线", "22": "可回收物/旧衣服", "23": "可回收物/易拉罐", "24": "可回收物/枕头", "25": "可回收物/毛绒玩具", "26": "可回收物/洗发水瓶", "27": "可回收物/玻璃杯", "28": "可回收物/皮鞋", "29": "可回收物/砧板", "30": "可回收物/纸板箱", "31": "可回收物/调料瓶", "32": "可回收物/酒瓶", "33": "可回收物/金属食品罐", "34": "可回收物/锅", "35": "可回收物/食用油桶", "36": "可回收物/饮料瓶", 3 "37": "有害垃圾/干电池", "38": "有害垃圾/软膏", "39": "有害垃圾/过期药物"

阿里云天池 收录

PU Dataset

德国帕德博恩大学(PU)轴承故障诊断数据集提供了丰富的轴承故障信号数据,包括内圈、外圈和滚动体故障等多种类型的轴承故障。与其他数据集相比,PU数据集的特色在于包含了大量的电机驱动系统故障数据,为轴承故障诊断研究提供了一个全面的实验平台。

github 收录

RAVDESS

情感语音和歌曲 (RAVDESS) 的Ryerson视听数据库包含7,356个文件 (总大小: 24.8 GB)。该数据库包含24位专业演员 (12位女性,12位男性),以中性的北美口音发声两个词汇匹配的陈述。言语包括平静、快乐、悲伤、愤怒、恐惧、惊讶和厌恶的表情,歌曲则包含平静、快乐、悲伤、愤怒和恐惧的情绪。每个表达都是在两个情绪强度水平 (正常,强烈) 下产生的,另外还有一个中性表达。所有条件都有三种模态格式: 纯音频 (16位,48kHz .wav),音频-视频 (720p H.264,AAC 48kHz,.mp4) 和仅视频 (无声音)。注意,Actor_18没有歌曲文件。

OpenDataLab 收录

PanoSent

PanoSent数据集由新加坡国立大学等机构创建,是一个用于多模态对话情感分析的大型高质量数据集。该数据集包含超过10,000条对话,涵盖100多个常见领域和场景,支持多语言(英语、中文、西班牙语)和多模态(文本、图像、音频、视频)。数据集的创建过程结合了人工标注和自动合成,确保了数据的高质量和多样性。PanoSent数据集主要应用于情感分析领域,旨在解决多模态对话中情感元素的全面提取和动态变化分析问题。

arXiv 收录