five

Phytochemical management of root knot nematode (Meloidogyne incognita) kofoid and white chitwood by Artemisia spp. in tomato (Lycopersicon esculentum L.)

收藏
Mendeley Data2024-06-25 更新2024-06-27 收录
下载链接:
https://scielo.figshare.com/articles/Phytochemical_management_of_root_knot_nematode_Meloidogyne_incognita_kofoid_and_white_chitwood_by_Artemisia_spp_in_tomato_Lycopersicon_esculentum_L_/11314706/1
下载链接
链接失效反馈
资源简介:
Abstract In vitro and screen house experiments were conducted to investigate the effectiveness of thirteen phytochemicals from Artemisia elegantissimia and A. incisa on root knot nematode, Meloidogyne incognita in tomato (Lycopersicon esculentum L.) cv. Rio Grande. A positive control (Carbofuran) and negative control (H2O) were also used for comparison. Effectiveness of phytochemicals against juveniles (J2s) mortality and egg hatch inhibition were evaluated after 24, 48 and 72 hours of incubation at three concentrations viz; 0.1, 0.2 and 0.3 mg/mL in vitro conditions. Amongst thirteen phytochemicals, Isoscopletin (Coumarin), Carbofuran and Apigenin (Flavonoid) showed the highest mortality and egg hatch inhibition of M. incognita at all intervals. Inhibition of eggs and J2s mortality were the greatest (90.0%) and (96.0%) at 0.3 mg/mL concentration. Application of phytochemicals caused reduction in number of galls, galling index, and egg masses on tomato plant and enhanced plant growth parameters under screen house conditions. Gall numbers (1.50), galling index (1.00), number of juveniles (4.83) and egg masses (4.00) were greatly reduced and plant growth parameters such as; plant height (28.48 cm), fresh (72.13 g) and dry shoot weights (35.99 g), and root fresh (6.58 g) and dry weights (1.43 g) were increased significantly by using Isoscopletin. In structure activity relationship, juveniles of M. incognita, exhibited variations in their shape and postures upon death when exposed to different concentrations of phytochemicals of Artemisia spp. The present study suggests that Artemisia based phytochemicals possess strong nematicidal effects and can be used effectively in an integrated disease management program against root knot nematodes.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Visual Genome

Visual Genome contains Visual Question Answering data in a multi-choice setting. It consists of 101,174 images from MSCOCO with 1.7 million QA pairs, 17 questions per image on average. Compared to the Visual Question Answering dataset, Visual Genome represents a more balanced distribution over 6 question types: What, Where, When, Who, Why and How. The Visual Genome dataset also presents 108K images with densely annotated objects, attributes and relationships.

Papers with Code 收录

中国区域地面气象要素驱动数据集 v2.0(1951-2024)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 74 年(1951~2024 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 74 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。

国家青藏高原科学数据中心 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

THCHS-30

“THCHS30是由清华大学语音与语言技术中心(CSLT)发布的开放式汉语语音数据库。原始录音是2002年在清华大学国家重点实验室的朱晓燕教授的指导下,由王东完成的。清华大学计算机科学系智能与系统,原名“TCMSD”,意思是“清华连续普通话语音数据库”,时隔13年出版,由王东博士发起,并得到了教授的支持。朱小燕。我们希望为语音识别领域的新研究人员提供一个玩具数据库。因此,该数据库对学术用户完全免费。整个软件包包含建立中文语音识别所需的全套语音和语言资源系统。”

OpenDataLab 收录

玉米幼苗与杂草数据集

该数据集是在新疆昌吉华兴农场玉米试验田采集,共有4130张图片、10521个边界框,用于玉米田真实场景杂草检测算法研究。反枝苋1304个实例、灰黎717个实例、龙葵290个实例、骆驼刺328个实例、马齿苋1390个实例、田旋花1227个实例、狗尾草891个实例、合被苋859个实例和玉米幼苗3515个实例。yolo类别标签如下:Amaranthus': 0, 'Chenopodium': 1, 'Solanum nigrum': 2, 'Alhagi sparsifolia': 3, 'Purslane': 4, 'Convolvulus': 5, 'Setaria': 6, 'Amaranthus polygonoides': 7, 'Corn': 8。现有的数据集多为单目标的图片,本次的数据集以多目标为主,弥补了杂草检测领域的数据集短缺的不足。

OpenDataLab 收录