five

Data from: The effect of gene flow on coalescent-based species-tree inference

收藏
Mendeley Data2024-06-25 更新2024-06-27 收录
下载链接:
https://zenodo.org/records/4984251
下载链接
链接失效反馈
资源简介:
Most current methods for inferring species-level phylogenies under the coalescent model assume that no gene flow occurs following speciation. Several studies have examined the impact of gene flow (e.g., Eckert and Carstens (2008); Chung and Ane (2011); Leache et al. (2014); Solis-Lemus et al. (2016)) and of ancestral population structure (DeGeorgio and Rosenberg, 2016) on the performance of species-level phylogenetic inference, and analytic results have been proven for network models of gene flow (e.g., Solis-Lemus et al. (2016); Zhu et al. (2016)). However, there are few analytic results for a continuous model of gene flow following speciation, despite the development of mathematical tools that could facilitate such study (e.g., Hobolth et al. (2011); Andersen et al. (2014); Tian and Kubatko (2016)). In this paper, we consider a three-taxon isolation-with-migration model that allows gene flow between sister taxa for a brief period following speciation, as well as variation in the effective population sizes across the species tree. We derive the probabilities of each of the three gene tree topologies under this model, and show that for certain choices of the gene flow and effective population size parameters, anomalous gene trees (i.e., gene trees that are discordant with the species tree but that have higher probability than the gene tree concor- dant with the species tree) exist. We characterize the region of parameter space producing anomalous trees, and show that the probability of the gene tree that is concordant with the species tree can be arbitrarily small. We then show that there is theoretical support for using SVDQuartets with an outgroup to infer the rooted three-taxon species tree in a model of gene flow between sister taxa. We study the performance of SVDQuartets on simulated data and compare it to three other commonly-used methods for species tree inference, AS- TRAL, MP-EST, and concatenation. The simulations show that ASTRAL, MP-EST, and concatenation can be statistically inconsistent when gene flow is present, while SVDQuartets performs well, though large sample sizes may be required for certain parameter choices.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

The MaizeGDB

The MaizeGDB(Maize Genetics and Genomics Database)是一个专门为玉米(Zea mays)基因组学研究提供数据和工具的在线资源。该数据库包含了玉米的基因组序列、基因注释、遗传图谱、突变体信息、表达数据、以及与玉米相关的文献和研究工具。MaizeGDB旨在支持玉米遗传学和基因组学的研究,为科学家提供了一个集成的平台来访问和分析玉米的遗传和基因组数据。

www.maizegdb.org 收录

ERIC (Education Resources Information Center)

ERIC (Education Resources Information Center) 是一个广泛的教育文献数据库,包含超过130万条记录,涵盖从1966年至今的教育研究、政策和实践。数据集内容包括教育相关的期刊文章、书籍、研究报告、会议论文、技术报告、政策文件等。

eric.ed.gov 收录

PASCAL VOC 2007

这个挑战的目标是从现实场景中的许多视觉对象类别中识别对象(即不是预先分割的对象)。它基本上是一个监督学习问题,因为它提供了一组标记图像的训练集。已选择的 20 个对象类别是: 人:人 动物:鸟、猫、牛、狗、马、羊 交通工具:飞机、自行车、船、公共汽车、汽车、摩托车、火车 室内:瓶子、椅子、餐桌、盆栽、沙发、电视/显示器 将有两个主要比赛和两个较小规模的“品酒师”比赛。内容:提供的训练数据由一组图像组成;每个图像都有一个注释文件,为图像中存在的 20 个类别之一中的每个对象提供一个边界框和对象类别标签。请注意,来自多个类的多个对象可能出现在同一图像中。

OpenDataLab 收录

EcoInvent

EcoInvent是一个生命周期评估(LCA)数据库,包含了大量产品的环境影响数据。它提供了详细的产品生命周期数据,包括原材料提取、生产、使用和废弃处理等各个阶段的环境影响信息。

www.ecoinvent.org 收录

猫狗分类

## 数据集描述 ### 数据集简介 本数据集是简单的猫狗二分类数据集,共2个类别,其中训练集包含275张带注释的图像,验证集包含70张带注释的图像。整个数据集共10.3MB,可用于快速模型验证、性能评估、小数据集训练等。 ### 数据集支持的任务 可用于快速模型验证、性能评估、小数据集训练等。 ## 数据集的格式和结构 ### 数据格式 数据集包括训练集train和验证集val,train和val文件夹之下按文件夹进行分类,共有2个子文件夹,同类别标签的图片在同一个文件夹下,图片格式为JPG。同时包含与标注文件中label id相对应的类名文件classname.txt。 ### 数据集加载方式 ```python from modelscope.msdatasets import MsDataset from modelscope.utils.constant import DownloadMode ms_train_dataset = MsDataset.load( 'cats_and_dogs', namespace='tany0699', subset_name='default', split='train') # 加载训练集 print(next(iter(ms_train_dataset))) ms_val_dataset = MsDataset.load( 'cats_and_dogs', namespace='tany0699', subset_name='default', split='validation') # 加载验证集 print(next(iter(ms_val_dataset))) ``` ### 数据分片 本数据集包含train和val数据集。 | 子数据集 | train | val | test | |---------|-------------:|-----------:|---------:| | default | 训练集 | 验证集 | / | ### Clone with HTTP ```bash git clone https://www.modelscope.cn/datasets/tany0699/cats_and_dogs.git ```

魔搭社区 收录