five

Lower lethal temperatures for two entomopathogenic nematodes

收藏
Mendeley Data2024-01-31 更新2024-06-27 收录
下载链接:
https://figshare.com/articles/dataset/Lower_lethal_temperatures_for_two_entomopathogenic_nematodes/1356152/1
下载链接
链接失效反馈
资源简介:
Description appended on acceptance of manuscript (submitted)
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Global Firepower Index (GFI)

Global Firepower Index (GFI) 是一个评估全球各国军事力量的综合指数。该指数考虑了超过50个因素,包括军事预算、人口、陆地面积、海军力量、空军力量、自然资源、后勤能力、地理位置等。数据集提供了每个国家的详细评分和排名,帮助分析和比较各国的军事实力。

www.globalfirepower.com 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

中国农村教育发展报告

该数据集包含了中国农村教育发展的相关数据,涵盖了教育资源分布、教育质量、学生表现等多个方面的信息。

www.moe.gov.cn 收录

DIV2K

displayName: DIV2K labelTypes: [] license: - DIV2K Custom mediaTypes: - Image paperUrl: https://doi.org/10.1109/CVPRW.2017.150 publishDate: "2017" publishUrl: https://data.vision.ee.ethz.ch/cvl/DIV2K/ publisher: - ETH Zurich tags: - RGB Image taskTypes: - Image Super-resolution --- # 数据集介绍 ## 简介 DIV2K数据集分为: 列车数据: 从800高清高分辨率图像开始,我们获得相应的低分辨率图像,并为2、3和4个降尺度因子提供高分辨率和低分辨率图像 验证数据: 100高清晰度高分辨率图像用于生成低分辨率对应图像,低分辨率从挑战开始提供,并用于参与者从验证服务器获得在线反馈; 当挑战的最后阶段开始时,高分辨率图像将被释放。 测试数据: 100多样的图像用于生成低分辨率的相应图像; 参与者将在最终评估阶段开始时收到低分辨率图像,并在挑战结束并确定获胜者后宣布结果。 ## 引文 ``` @inproceedings{agustsson2017ntire, title={Ntire 2017 challenge on single image super-resolution: Dataset and study}, author={Agustsson, Eirikur and Timofte, Radu}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition workshops}, pages={126--135}, year={2017} } ``` ## Download dataset :modelscope-code[]{type="git"}

魔搭社区 收录

TongueDx Dataset

TongueDx数据集是一个专为远程舌诊研究设计的综合性舌象图像数据集,由香港理工大学和新加坡管理大学的研究团队创建。该数据集包含5109张图像,涵盖了多种环境条件下的舌象,图像通过智能手机和笔记本电脑摄像头采集,具有较高的多样性和代表性。数据集不仅包含舌象图像,还提供了详细的舌面属性标注,如舌色、舌苔厚度等,并附有受试者的年龄、性别等人口统计信息。数据集的创建过程包括图像采集、舌象分割、标准化处理和多标签标注,旨在解决远程医疗中舌诊图像质量不一致的问题。该数据集的应用领域主要集中在远程医疗和中医诊断,旨在通过自动化技术提高舌诊的准确性和可靠性。

arXiv 收录