PAN-00128097 - Roman decorative nail C
收藏PlantVillage
在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。
OpenDataLab 收录
中国沙漠边界数据集(2000-2020年)
本数据集基于Landsat遥感影像,通过辐射定标和大气校正等预处理算法得到沙漠区域影像,通过人工目视解译及波段指数的方法提提取沙漠边界区域。数据集涉及的沙漠主要包括中国八大沙漠。分别为腾格里沙漠,塔克拉马干沙漠,巴丹吉林沙漠,库布奇沙漠,乌兰布和沙漠,库木塔格沙漠,古尔班通古特沙漠,...
国家冰川冻土沙漠科学数据中心 收录
AIS数据集
该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。
github 收录
威斯康星乳腺癌数据分析及自动诊断
数据集bc_data.csv:来自威斯康星乳腺癌数据库(Wisconsin Breast Cancer Database),主要记录了569个病例的32个属性。
阿里云天池 收录
PASCAL VOC 2007
这个挑战的目标是从现实场景中的许多视觉对象类别中识别对象(即不是预先分割的对象)。它基本上是一个监督学习问题,因为它提供了一组标记图像的训练集。已选择的 20 个对象类别是: 人:人 动物:鸟、猫、牛、狗、马、羊 交通工具:飞机、自行车、船、公共汽车、汽车、摩托车、火车 室内:瓶子、椅子、餐桌、盆栽、沙发、电视/显示器 将有两个主要比赛和两个较小规模的“品酒师”比赛。内容:提供的训练数据由一组图像组成;每个图像都有一个注释文件,为图像中存在的 20 个类别之一中的每个对象提供一个边界框和对象类别标签。请注意,来自多个类的多个对象可能出现在同一图像中。
OpenDataLab 收录
