five

"Table 2" of "Event shapes and azimuthal correlations in Z + jets events in pp collisions at sqrt(s) =7 TeV"

收藏
Mendeley Data2024-06-25 更新2024-06-28 收录
下载链接:
https://www.hepdata.net/record/75389
下载链接
链接失效反馈
资源简介:
CERN-LHC. Measurements of event shapes and azimuthal correlations are presented for events where a Z boson is produced in association with jets in proton-proton collisions. The data collected with the CMS detector at the CERN LHC at sqrt(s) = 7 TeV correspond to an integrated luminosity of 5.0 inverse femtobarns. The analysis provides a test of predictions from perturbative QCD for a process that represents a substantial background to many physics channels. Results are presented as a function of jet multiplicity, for inclusive Z boson production and for Z bosons with transverse momenta greater than 150 GeV, and compared to predictions from Monte Carlo event generators that include leading-order multiparton matrix-element (with up to four hard partons in the final state) and next-to-leading-order simulations of Z + 1-jet events. The experimental results are corrected for detector effects, and can be compared directly with other QCD models For $Z/\gamma^{*}$ plus jets events we select: - two same flavour opposite sign leptons with $p_{T} > 20$ GeV and $|\eta| < 2.4$ and $71 < M_{\ell\ell} < 111 $ GeV - leptons are "dressed" with all photons in a cone of radius $\Delta R = 0.1$ - at least one jet, jet selection $p_{T} > 30$ GeV and $|\eta| < 2.4$, we remove jets within a radius of $\Delta R < 0.4$ with respect to the axes of each lepton - for the ratio plots a cut on Z rapidity |y|<1.4 is also applied The event shape variable is defined as $\tau_{\perp}\equiv 1-\max_{\vec{n}_{T}}\frac{\sum_{i}\left|\vec{p}_{\perp,i}\cdot \vec{n}_{T} \right|}{\sum_{i}p_{\perp,i}}$.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录

URPC系列数据集, S-URPC2019, UDD

URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。

github 收录

UIEB, U45, LSUI

本仓库提供了水下图像增强方法和数据集的实现,包括UIEB、U45和LSUI等数据集,用于支持水下图像增强的研究和开发。

github 收录

OpenSonarDatasets

OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。

github 收录

ERCOT电网综合数据集

ERCOT电网综合数据集是由德克萨斯A&M大学和哈佛大学的研究团队创建的,旨在支持电力系统中的多元时间序列预测。该数据集包含五年内的负荷、电价、辅助服务价格和可再生能源发电数据,具有每小时的时间分辨率和区域级别的详细信息。数据集的创建过程结合了高分辨率的外部预测数据,以提高预测精度。该数据集主要应用于电力系统的预测和优化,旨在解决电网中由于可再生能源集成和需求变化带来的不确定性问题。

arXiv 收录