The simulation dataset of each model for the circle antipode experiment
收藏基于OFES数据计算台湾以东逐月位涡(1993-2017)
基于1993-2017年间OFES高分辨率模式数据集中的温度和盐度数据计算的台湾以东位势涡度逐月三维分布。所使用OFES数据为开源数据。
国家海洋科学数据中心 收录
核电厂焊缝射线质量智能评定模型数据
1.对核电厂焊缝射线质量、缺陷进行智能精准识别与评定,为核电厂焊缝射线质量智能评定模型提供训练数据,提高核电厂焊缝射线评定标准的准确性,进一步提升核电厂焊缝射线质量。 2.能够为核电厂焊缝质量控制提供决策依据,通过焊缝质量、缺陷训练数据持续优化模型检测标准,进一步保障核电站设备安全和长期稳定运行。数据收集和处理: 步骤1数据收集:方式一:通过使用数字射线检测设备采集获取原始焊缝图像数据;方式二:通过高分辨率扫描设备对传统射线底片影像数据转化为原始焊缝图像数据。 步骤2数据处理:对收集到的原始焊缝图像数据进行图像预处理,去除图像噪声、矫正图像畸变,统一图像尺寸(将图像的高度(imageHeight)和宽度(imageWidth)统一为3580×780(像素),确保原始焊缝图像数据质量和一致性。 步骤3数据标注:使用图像标注工具对原始焊缝图像数据的Filename(文件名)、Shapes(形状)、imagePath(路径)、imageData(图像数据)、imageHeight(图像高度)、imageWidth(图像宽度)等字段进行数据标注。其中:Filename(文件名)按照image_XXX.json按序号依次标注;Shapes(形状)字段中的label(标签)用于标注缺陷类型,缺陷类型标签包括5个缺陷等级:liewen(裂纹)、qikong(气孔)、jiazha(夹渣)、weironghe(未熔合)、weihantou(未焊透),points(位置)用于标记缺陷在图像中的位置,通过坐标的形式进行标注,shape_type(形状类型)为用于框选缺陷的形状,在本数据标注过程中均使用rectangle(矩形)框进行框选,在同一个焊缝图像数据中可能存在多个缺陷,在进行数据标注的过程中Shapes(形状)可能包含多个缺陷;imagePath(路径)用于标记生成标注文件的存储位置,存储在图像的同一路径(文件夹)下;imageData(图像数据)为对通过数据收集阶段获取到的原始焊缝图像数据进行标注,按照image_XXX.tiff进行命名存储;对图像高度(imageHeight)和宽度(imageWidth)分别标注为3580和780。通过以上数据标注过程确保为后续模型训练提供高质量的标注数据。 通过使用核电厂焊缝射线质量智能评定模型数据能够构建例如:卷积神经网络(CNN)的自动识别模型,实现核电厂焊缝射线图像缺陷的自动识别并和缺陷类型的标注,辅助人工评定工作,提升检测效率和准确度。
浙江省数据知识产权登记平台 收录
Salinas
Salinas数据集是一个高光谱遥感图像数据集,包含16个波段,覆盖了加利福尼亚州Salinas山谷的农业区域。该数据集主要用于高光谱图像分类和土地覆盖分析。
www.ehu.eus 收录
LIDC-IDRI
LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。
OpenDataLab 收录
开源公平性干预数据集
开源公平性干预数据集由乔治梅森大学计算机科学系的研究团队创建,包含62个开源公平性干预项目。该数据集旨在帮助研究人员和从业者更好地理解和使用公平性干预工具,以提高机器学习模型的公平性。数据集涵盖了广泛的公平性干预工具,包括工具、工具包、库和框架等。该数据集的创建过程包括从GitHub上搜索和筛选公平性干预项目,并分析其可用性、兼容性、算法覆盖范围、区分因素和机器学习生命周期支持等方面。该数据集的应用领域包括医疗保健、金融和教育等领域,旨在解决机器学习模型中的偏见问题,促进公平和道德的决策。
arXiv 收录
