five

Trophic scaling and occupancy analysis reveals a lion population limited by human pressure in the Limpopo National Park, Mozambique.

收藏
Mendeley Data2024-06-29 更新2024-06-27 收录
下载链接:
https://figshare.com/articles/dataset/rophic_scaling_and_occupancy_analysis_reveals_a_lion_population_limited_by_human_pressure/931785
下载链接
链接失效反馈
资源简介:
Trophic scaling and occupancy analysis reveals a lion population limited by human pressure in the Limpopo National Park, Mozambique. Authors: Kristoffer T. Everatt1*, Leah Andresen1 , Michael J. Somers1,2 Affiliations: Centre for Wildlife Management, University of Pretoria, Pretoria, South AfricaCentre for Invasion Biology, University of Pretoria, Pretoria, South Africa *To whom correspondence should be addressed: kteveratt@gmail.com Abstract The African lion (Panthera leo) has suffered drastic population and range declines over the last few decades and is listed by the IUCN as vulnerable to extinction. Conservation management requires reliable population estimates, however these data are lacking for many of the continent’s remaining lion populations. It is possible to estimate lion populations using a trophic scaling approach based on relatively easy to obtain aerial prey data. However, such inferences assume that a predator population is subject only to bottom-up regulation, and are thus likely to produce biased estimates in systems with considerable top-down anthropogenic pressures. Here we provide baseline data on the status of lions in a developing National Park in Mozambique that is impacted by humans and livestock. We compare a direct density estimate using call-ups with an estimate derived from trophic scaling. We then use replicated detection/non-detection surveys to estimate the proportion of area occupied by lions, and hierarchical ranking of covariates to provide inferences on the relative contribution of prey resources and anthropogenic factors influencing lion occurrence. Direct density estimates were less than 1/3 of the estimate derived from prey resources (0.99 lions/100 km2 vs. 3.05 lions/100 km2). The proportion of area occupied by lions was Ψ = 0.436 (SE = 0.127), or approximately 44% of a 2400 km2 sample of potential habitat. Although lions were strongly predicted by a greater probability of encountering prey resources, the greatest contributing factor to lion occurrence was a strong negative association with agro-pastoralist settlement areas. Finally, our empirical abundance estimate is approximately a third of a published abundance estimate derived from opinion surveys. Altogether, our results describe a lion population that is held below resource-based carrying capacity by anthropogenic factors, and highlight the limitations of trophic scaling and opinion surveys for estimating predator populations exposed to anthropogenic pressures. Our study provides the first empirical quantification of a population that future change can be measured against.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

alpacaGPT4_llama8b-v120-jb-seed2-alpaca_512_ngt0.7_tp0.9

该数据集包含了用户和助手之间的对话,具有用户和助手发言的文本特征,以及一个索引级别特征。数据集分为训练集,共有52001条对话记录。

huggingface 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

海天瑞声-超大规模中文多领域高质量多轮对话语料库

这是一个符合中国人表达习惯的自然对话数据集,共计约1,0000,000轮,上亿级token,包含正式&非正式风格对话,使用偏口语化自然表达。覆盖工作、生活、校园等场景,及金融、教育、娱乐、体育、汽车、科技等领域。在数据集构成上,DOTS-NLP-216包含了对真实场景的对话采集,及高度还原真实场景的模拟对话这两种方式,兼顾分布的代表性、多样性和样本规模。

魔搭社区 收录