five

Data for: Modeling energy price dynamics: GARCH versus stochastic volatility

收藏
Mendeley Data2024-06-25 更新2024-06-26 收录
下载链接:
https://data.mendeley.com/datasets/t9ps4nvdfz
下载链接
链接失效反馈
资源简介:
Abstract of associated article: We compare a number of GARCH and stochastic volatility (SV) models using nine series of oil, petroleum product and natural gas prices in a formal Bayesian model comparison exercise. The competing models include the standard models of GARCH(1,1) and SV with an AR(1) log-volatility process, as well as more flexible models with jumps, volatility in mean, leverage effects, and t distributed and moving average innovations. We find that: (1) SV models generally compare favorably to their GARCH counterparts; (2) the jump component and t distributed innovations substantially improve the performance of the standard GARCH, but are unimportant for the SV model; (3) the volatility feedback channel seems to be superfluous; (4) the moving average component markedly improves the fit of both GARCH and SV models; and (5) the leverage effect is important for modeling crude oil prices—West Texas Intermediate and Brent—but not for other energy prices. Overall, the SV model with moving average innovations is the best model for all nine series.
创建时间:
2024-01-23
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

AirSafe_DB

该数据集包含了从Plane Crash Info网站上抓取的飞机事故的结构化信息,原始数据为CSV格式,经过AI模型处理后生成了标准化的JSON格式数据。数据集包含5049条记录,每条记录包括事故信息(日期、时间、地点等)、飞机信息(运营商、航班号、机型等)、伤亡统计(总死亡人数、机组人员、乘客、地面人员等)、事故摘要(事故描述、事故类型、飞行阶段等)等内容。数据经过标准化处理,确保数据质量和一致性,适用于分析和研究。

huggingface 收录

DIPSEER: A Dataset for In-Person Student Emotion and Engagement Recognition in the Wild

DIPSEER是一个用于识别学生情绪和参与度的数据集,包含图像、标签和传感器数据。

github 收录

TROPOMI

TROPOMI(Tropospheric Monitoring Instrument)数据集包含大气成分的观测数据,主要用于监测臭氧、二氧化氮、甲醛、甲烷、二氧化碳等气体,以及气溶胶和云层。这些数据有助于研究空气质量、气候变化和环境监测。

www.tropomi.eu 收录

FACED

FACED数据集是由清华大学脑与智能实验室和智能技术与系统国家重点实验室共同创建,包含从123名参与者收集的32通道EEG信号,用于情感计算研究。数据集通过记录参与者观看28个情感诱发视频片段时的EEG信号构建,旨在通过EEG信号分析情感状态。创建过程中,数据经过标准化和统一预处理,设计了四个EEG分类任务。该数据集主要应用于情感识别和脑机接口领域,旨在解决情感计算中的分类问题,提高情感识别的准确性和效率。

arXiv 收录

LFW (Labeled Faces in the Wild)

Labeled Faces in the Wild,是一个人脸照片数据库,旨在研究无约束的人脸识别问题。该数据集包含从网络收集的超过 13,000 张人脸图像。每张脸都标有图中人物的名字。照片中的 1680 人在数据集中有两张或更多张不同的照片。这些人脸的唯一限制是它们是由 Viola-Jones 人脸检测器检测到的。更多细节可以在下面的技术报告中找到。

OpenDataLab 收录