five

Leveraging Green Infrastructure for Efficient Treatment of Reclaimed Water

收藏
Mendeley Data2024-06-29 更新2024-06-27 收录
下载链接:
https://zenodo.org/record/7653692
下载链接
链接失效反馈
资源简介:
Abstract from Manuscript submission: Global water scarcity necessitates creative, yet practical, solutions to meet ever-growing demand. Green infrastructure is increasingly used in this context to provide water in environmentally friendly and sustainable ways. In this study, we focused on reclaimed wastewater from a joint gray and green infrastructure system employed by the Loxahatchee River District in Florida. The water system consists of a series of treatment stages for which we assessed 9 years of monitoring data. We measured water quality after secondary (gray) treatment, then in onsite lakes, offsite lakes, landscape irrigation (via sprinklers), and ultimately in downstream canals. Our findings show gray infrastructure designed for secondary treatment, integrated with green infrastructure, achieved lower nutrient concentrations nearly equivalent to advanced wastewater treatment systems. For example, we observed a dramatic decline in median nitrogen concentration from 19.65 mg L-1 after secondary treatment to 5.11 mg L-1 after spending an average of 42 days in the onsite lakes. Nitrogen concentration continued to decline as reclaimed water moved from onsite lakes to offsite lakes (3.54 mg L-1) and irrigation sprinklers (3.32 mg L-1). Phosphorus concentrations exhibited a similar pattern. These decreasing nutrient concentrations led to relatively low nutrient loading rates and occurred while consuming substantially less energy and producing fewer greenhouse gas emissions than traditional gray infrastructure—at lower cost and higher efficiency. There was no evidence of eutrophication in canals downstream of the residential landscape whose sole source of irrigation water was reclaimed water. This study provides an established example of how circularity in water use can be used to work toward sustainable development goals. Keywords: Eutrophication, Irrigation, Nitrogen, Phosphorus, Storage lakes, Wastewater
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

波士顿房价数据集

波士顿房价数据集是一个经典的机器学习数据集,通常用于回归任务,尤其是房价预测。下方文档中有所有字段顺序的描述。

阿里云天池 收录

MeSH

MeSH(医学主题词表)是一个用于索引和检索生物医学文献的标准化词汇表。它包含了大量的医学术语和概念,用于描述医学文献中的主题和内容。MeSH数据集包括主题词、副主题词、树状结构、历史记录等信息,广泛应用于医学文献的分类和检索。

www.nlm.nih.gov 收录

YOLO Drone Detection Dataset

为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而设计。该数据集来源于Kaggle上的公开数据集,包含在各种环境和摄像机视角下捕获的多样化的带注释图像。数据集包括无人机实例以及其他常见对象,以实现强大的检测和分类。

github 收录