five

Paper2Fig100k dataset

收藏
Mendeley Data2024-05-10 更新2024-06-29 收录
下载链接:
https://zenodo.org/records/7299423
下载链接
链接失效反馈
资源简介:
Paper2Fig100k dataset A dataset with over 100k images of figures and text captions from research papers. Images of figures display diagrams, methodologies, and architectures of research papers in arXiv.org. We provide also text captions for each figure, and OCR detections and recognitions on the figures (bounding boxes and texts). The dataset structure consists of a directory called "figures" and two JSON files (train and test), that contain data from each figure. Each JSON object contains the following information about a figure: figure_id: Figure identification based on the arXiv identifier: <yymm>.<xxxxxx>-Figure<I>-<k>.png. captions: Text pairs extracted from the paper that relates to the figure. For instance, the actual caption of the figure or references to the figure in the manuscript. ocr_result: Result of performing OCR text recognition over the image. We provide a list of triplets (bounding box, confidence, text) present in the image. aspect: Aspect ratio of the image (H/W). Take a look at the OCR-VQGAN GitHub repository, which uses the Paper2Fig100k dataset to train an image encoder for figures and diagrams, that uses OCR perceptual loss to render clear and readable texts inside images. The dataset is explained in more detail in the paper OCR-VQGAN: Taming Text-within-Image Generation @WACV 2023 Paper abstract Synthetic image generation has recently experienced significant improvements in domains such as natural image or art generation. However, the problem of figure and diagram generation remains unexplored. A challenging aspect of generating figures and diagrams is effectively rendering readable texts within the images. To alleviate this problem, we present OCR-VQGAN, an image encoder, and decoder that leverages OCR pre-trained features to optimize a text perceptual loss, encouraging the architecture to preserve high-fidelity text and diagram structure. To explore our approach, we introduce the Paper2Fig100k dataset, with over 100k images of figures and texts from research papers. The figures show architecture diagrams and methodologies of articles available at arXiv.org from fields like artificial intelligence and computer vision. Figures usually include text and discrete objects, e.g., boxes in a diagram, with lines and arrows that connect them. We demonstrate the superiority of our method by conducting several experiments on the task of figure reconstruction. Additionally, we explore the qualitative and quantitative impact of weighting different perceptual metrics in the overall loss function.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

万博荟电商业务用户行为日志数据

该数据集合为万博荟电商平台运营过程中用户行为日志等相关操作信息数据,主要包括访问时间、时区、客户端ip地址、请求时间、连接序列号、请求状态、用户浏览器其他信息、来源页面、用户ID、当前页面地址、页面标题、商品ID、来源网站、入口页面、事件类别。该数据用于运营部门对用户的需求分析,支撑业务用户流量域数据分析,商品推荐算法用户喜好捕捉,应用板块点击情况分析等。

广东省数据知识产权存证登记平台 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

DAT

DAT是一个统一的跨场景跨领域基准,用于开放世界无人机主动跟踪。它提供了24个视觉复杂的场景,以评估算法的跨场景和跨领域泛化能力,并具有高保真度的现实机器人动力学建模。

github 收录

中国省级灾害统计空间分布数据集(1999-2020年)

该数据集为中国省级灾害统计空间分布数据集,时间为1999-2020年。该数据集包含中国各省自然灾害、地质灾害、地震灾害、森林火灾、森林病虫鼠害、草原灾害六类灾害的详细数据。数据量为206MB,数据格式为excel。

国家地球系统科学数据中心 收录

CHBench

CHBench是首个全面的中文健康相关基准,旨在评估大型语言模型在理解各种场景下的身心健康方面的能力。CHBench包括6,493条与心理健康相关的条目和2,999条专注于身体健康相关的条目,涵盖了广泛的主题。

github 收录