five

Dispositif d'observations Megascope sur les campagnes halieutiques et océanographiques - Données d'occurrence du dispositif Megascope - Observatoire PELAGIS UMS 3462

收藏
Mendeley Data2024-05-13 更新2024-06-28 收录
下载链接:
https://www.gbif.org/dataset/a39def5b-57a0-47e9-814d-ad778131254f
下载链接
链接失效反馈
资源简介:
Ce jeu de données est issu de la base appelée Pelagis-Observations (base de données développées et administrée par l'UMS 3468 BBEES) et il rassemble les données d'observations de mammifères marins issues du dispositif Megascope, collectées au cours d'embarquements à bord de navires océanographiques entre 2003 et 2017. Il s’agit ici des campagnes menées par l'Ifremer: EVHOE (ÉValuation Halieutique de l’Ouest de l’Europe), PELGAS (PELagiques du golfe de GAScogne), IBTS (International Bottom Trawl Survey), BOBECO et BOBGEO (projet européen CoralFISH), CAMANOC (CAMpagne en MANche OCcidentale), JUVENA (AZTI-Tecnalia, Centre technologique espagnol sur les ressources alimentaires marines), PELACUS (Institut Espagnol d'Océanographie), CGFS (Channel Ground Fish Survey) et PELMED (PELagiques de Méditerranée).
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域地面气象要素驱动数据集 v2.0(1951-2024)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 74 年(1951~2024 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 74 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。

国家青藏高原科学数据中心 收录

Electrical-Lines-Defect-Detection

该数据集是针对电力线路缺陷检测的,包含了由APEPDCL线路工人使用移动相机捕获的图片,并由Sampath Balaji团队整理。数据集以CC BY 4.0许可证发布,旨在促进开源合作、可重现性和人工智能的实践学习。数据集分为两个模块:目标检测和分类。目标检测模块遵循YOLOv12格式,分类模块由文件夹和CSV文件组成,都提供了训练、验证和测试数据集。

huggingface 收录

MNIST数据集

‌数据规模‌ ‌训练集‌:60,000 张手写数字图像(28×28 像素灰度图)及对应标签 34。 ‌测试集‌:10,000 张图像与标签,用于模型评估 68。 ‌数据来源‌ 由美国国家标准与技术研究院(NIST)收集,50% 样本来自高中生手写,50% 来自人口普查局工作人员 48。 经 Yann LeCun 团队标准化处理,成为机器学习基准数据集 1011。

阿里云天池 收录

哈尔滨市区域产业链点发展评估数据

我司基于哈尔滨市区域产业发展的特征,结合数据的可获得性和有效性,基于不同产业链点的产业规模、龙头效应、资本热度、科技创新、发展效率等多个维度构建哈尔滨市区域产业链点的综合发展效能评估体系,并完成数据收集、数据清洗、特征衍生、模型构建、模型验证全过程,形成涵盖哈尔滨市主要产业链下核心链点的区域产业链点发展评分,能有效帮助金融机构在制定产业相关信贷政策以及确定特定产业预授信额度时,更准确全面地评价区域产业的发展效能和动态变化,辅助金融机构更好做好区域产业金融服务。区域产业链点发展指数 = ∑ Si * Xi ,其中Si是指标相应的权重系数,Xi是评价指标,i=1,2,3,……,21,21个指标包括“区域产业链点在营企业数量”“区域产业链点近1年新注册企业数量”等,指标经归一化处理后参与计算。模型结合专家经验和机器学习算法得出,专家主要基于行业实践、政策导向和国际贸易特点,帮助筛选关键指标并初步设定权重范围,然后通过主成分分析和随机森林算法进一步筛选指标并对初始权重进行优化。

浙江省数据知识产权登记平台 收录

Pima Indians Diabetes Database

该项目使用的数据集是Pima Indians Diabetes Database,来源于UCI机器学习库。该数据集包含多个医学预测变量和一个目标变量,即Outcome,用于指示患者是否患有糖尿病(1)或未患(0)。

github 收录