茂名市政务服务专题房地产开发面积统计信息|房地产统计数据集|政务服务数据集
收藏Figshare
Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。
figshare.com 收录
垃圾分类数据集
华为云垃圾分类训练集:分为训练集和测试集,训练集为原华为云垃圾分类比赛数据集,测试集为另外添加图片。大致分为4类,"0": "其他垃圾/一次性快餐盒", "1": "其他垃圾/污损塑料", "2": "其他垃圾/烟蒂", "3": "其他垃圾/牙签", "4": "其他垃圾/破碎花盆及碟碗", "5": "其他垃圾/竹筷", 1 "6": "厨余垃圾/剩饭剩菜", "7": "厨余垃圾/大骨头", "8": "厨余垃圾/水果果皮", "9": "厨余垃圾/水果果肉", "10": "厨余垃圾/茶叶渣", "11": "厨余垃圾/菜叶菜根", "12": "厨余垃圾/蛋壳", "13": "厨余垃圾/鱼骨", 2 "14": "可回收物/充电宝", "15": "可回收物/包", "16": "可回收物/化妆品瓶", "17": "可回收物/塑料玩具", "18": "可回收物/塑料碗盆", "19": "可回收物/塑料衣架", "20": "可回收物/快递纸袋", "21": "可回收物/插头电线", "22": "可回收物/旧衣服", "23": "可回收物/易拉罐", "24": "可回收物/枕头", "25": "可回收物/毛绒玩具", "26": "可回收物/洗发水瓶", "27": "可回收物/玻璃杯", "28": "可回收物/皮鞋", "29": "可回收物/砧板", "30": "可回收物/纸板箱", "31": "可回收物/调料瓶", "32": "可回收物/酒瓶", "33": "可回收物/金属食品罐", "34": "可回收物/锅", "35": "可回收物/食用油桶", "36": "可回收物/饮料瓶", 3 "37": "有害垃圾/干电池", "38": "有害垃圾/软膏", "39": "有害垃圾/过期药物"
阿里云天池 收录
ShapeNet
ShapeNet 是由斯坦福大学、普林斯顿大学和美国芝加哥丰田技术研究所的研究人员开发的大型 3D CAD 模型存储库。该存储库包含超过 3 亿个模型,其中 220,000 个模型被分类为使用 WordNet 上位词-下位词关系排列的 3,135 个类。 ShapeNet Parts 子集包含 31,693 个网格,分为 16 个常见对象类(即桌子、椅子、平面等)。每个形状基本事实包含 2-5 个部分(总共 50 个部分类)。
OpenDataLab 收录
Paper III (Walker et al. 2024)
Data products used in 3-D CMZ Paper III, Walker et al. (2024). The full cloud catalogue is provided in tabular format, along with a full CMZ map showing the clouds and their assigned IDs. For each cloud ID in the published catalogue there are: - Individual cube cutouts from the MOPRA 3mm CMZ survey (HC3N, HCN, and HNCO). - Individual cube cutouts from the APEX 1mm CMZ survey (13CO, C18O, and H2CO). - Cloud-averaged spectra of the ATCA H2CO 4.83 GHz line. - PV slices of the ATCA H2CO 4.83 GHz line, taken across the major axis of the source. - Where applicable, there are mask files which correspond to the different velocity components of the cloud. In these cases, there are two mask files per velocity component, corresponding to the different masking approaches described in the paper.
DataCite Commons 收录
UCF-Crime
UCF-犯罪数据集是128小时视频的新型大规模第一个数据集。它包含1900年长而未修剪的真实世界监控视频,其中包含13个现实异常,包括虐待,逮捕,纵火,殴打,道路交通事故,入室盗窃,爆炸,战斗,抢劫,射击,偷窃,入店行窃和故意破坏。之所以选择这些异常,是因为它们对公共安全有重大影响。这个数据集可以用于两个任务。首先,考虑一组中的所有异常和另一组中的所有正常活动的一般异常检测。第二,用于识别13个异常活动中的每一个。
OpenDataLab 收录
