five

政府购买服务公开|政府购买服务数据集|应急管理数据集

收藏
北京市公共数据开放平台2024-03-01 收录
政府购买服务
应急管理
下载链接:
http://data.beijing.gov.cn/zyml/ajg/saqjgj/28a1df4596a34090955a1c777be229af.htm
下载链接
链接失效反馈
资源简介:
该数据是市应急管理局提供的政府购买服务公开信息,包括3个文本。
提供机构:
市应急管理局
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

AirSafe_DB

该数据集包含了从Plane Crash Info网站上抓取的飞机事故的结构化信息,原始数据为CSV格式,经过AI模型处理后生成了标准化的JSON格式数据。数据集包含5049条记录,每条记录包括事故信息(日期、时间、地点等)、飞机信息(运营商、航班号、机型等)、伤亡统计(总死亡人数、机组人员、乘客、地面人员等)、事故摘要(事故描述、事故类型、飞行阶段等)等内容。数据经过标准化处理,确保数据质量和一致性,适用于分析和研究。

huggingface 收录

垃圾分类数据集

华为云垃圾分类训练集:分为训练集和测试集,训练集为原华为云垃圾分类比赛数据集,测试集为另外添加图片。大致分为4类,"0": "其他垃圾/一次性快餐盒", "1": "其他垃圾/污损塑料", "2": "其他垃圾/烟蒂", "3": "其他垃圾/牙签", "4": "其他垃圾/破碎花盆及碟碗", "5": "其他垃圾/竹筷", 1 "6": "厨余垃圾/剩饭剩菜", "7": "厨余垃圾/大骨头", "8": "厨余垃圾/水果果皮", "9": "厨余垃圾/水果果肉", "10": "厨余垃圾/茶叶渣", "11": "厨余垃圾/菜叶菜根", "12": "厨余垃圾/蛋壳", "13": "厨余垃圾/鱼骨", 2 "14": "可回收物/充电宝", "15": "可回收物/包", "16": "可回收物/化妆品瓶", "17": "可回收物/塑料玩具", "18": "可回收物/塑料碗盆", "19": "可回收物/塑料衣架", "20": "可回收物/快递纸袋", "21": "可回收物/插头电线", "22": "可回收物/旧衣服", "23": "可回收物/易拉罐", "24": "可回收物/枕头", "25": "可回收物/毛绒玩具", "26": "可回收物/洗发水瓶", "27": "可回收物/玻璃杯", "28": "可回收物/皮鞋", "29": "可回收物/砧板", "30": "可回收物/纸板箱", "31": "可回收物/调料瓶", "32": "可回收物/酒瓶", "33": "可回收物/金属食品罐", "34": "可回收物/锅", "35": "可回收物/食用油桶", "36": "可回收物/饮料瓶", 3 "37": "有害垃圾/干电池", "38": "有害垃圾/软膏", "39": "有害垃圾/过期药物"

阿里云天池 收录

MMOral

MMOral是一个针对全景X光片解读的大规模多模态指令数据集和基准。它包括20,563张带有1.3百万条指令跟随实例的注释图像,涵盖了多种任务类型,如属性提取、报告生成、视觉问答和基于图像的对话。此外,我们还提出了MMOral-Bench,这是一个涵盖牙科五个关键诊断维度的综合评估套件。我们评估了64个LVLMs在MMOral-Bench上的表现,发现即使是表现最好的模型GPT-4o,也只能达到41.45%的准确率,这揭示了当前模型在这一领域的显著局限性。为了促进该特定领域的发展,我们还提出了OralGPT,它使用我们精心策划的MMOral指令数据集对Qwen2.5-VL-7B进行监督微调。值得注意的是,一个SFT周期就为LVLMs带来了显著的性能提升,例如,OralGPT表现出24.73%的改进。MMOral和OralGPT都具有作为智能牙科关键基础的巨大潜力,并使牙科领域中的多模态AI系统更具临床意义。数据集、模型、基准和评估套件可在上述网址获取。

arXiv 收录

SH17

SH17数据集由温莎大学的机械、汽车和材料工程系创建,包含8,099张标注图像,涵盖17类个人防护装备(PPE),如安全帽、安全眼镜等。数据集从多样化的工业环境中收集,旨在通过对象检测和卷积神经网络技术,提高制造业中的人身安全。创建过程中,数据通过Pexels网站收集并由专业人员进行标注,确保了数据的质量和多样性。该数据集主要用于训练和验证对象检测模型,以解决工业环境中的个人防护装备合规性问题。

arXiv 收录