five

Using digital field notebooks in geoscientific learning in polar environments

收藏
Mendeley Data2024-06-25 更新2024-06-30 收录
下载链接:
https://tandf.figshare.com/articles/dataset/Using_digital_field_notebooks_in_geoscientific_learning_in_polar_environments/11882523
下载链接
链接失效反馈
资源简介:
The emergence of digital tools, including tablets with a multitude of built-in sensors, allows gathering many geological observations digitally and in a geo-referenced context. This is particularly important in the polar environments where (1) limited time is available at each outcrop due to harsh weather conditions, and (2) outcrops are rarely re-visited due to the high economic and environmental cost of accessing the localities and the short field season. In an educational development project, we explored the use of digital field notebooks in student groups of 3–4 persons during five geological field campaigns in the Arctic archipelago of Svalbard. The field campaigns formed part of the Bachelor and Master/PhD courses at the University Centre in Svalbard in Longyearbyen at 78°N. The digital field notebooks comprise field-proofed tablets with relevant applications, notably FieldMove. Questionnaires and analyses of students’ FieldMove projects provided data on student experience of using digital field notebooks, and insight into what students used the digital notebooks for, the notebooks’ functionality and best practices. We found that electronic and geo-referenced note- and photo-taking was by far the dominant function of the digital field notebooks. In addition, some student groups collected significant amounts of structural data using the built-in sensors. Graduate students found the ability to conduct large-scale field mapping and directly display it within the digital field notebook particularly useful. Our study suggests that the digital field notebooks add value to field-based education in polar environments.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

OpenPose

OpenPose数据集包含人体姿态估计的相关数据,主要用于训练和评估人体姿态检测算法。数据集包括多视角的图像和视频,标注了人体关键点位置,适用于研究人体姿态识别和动作分析。

github.com 收录

Apple Stock Price Data

Historical stock price data for AAPL (apple)

kaggle 收录

cricket_data

该数据集包含了多种板球比赛的数据,包括每场比赛的详细信息,如比赛日期、地点、参赛队伍、比赛结果等。数据以文件形式存储,每个文件对应不同的比赛信息,如投球数据、比赛日期、比赛信息、比赛详情、元数据、比赛结果、最有价值球员、超级替补、参赛队伍、抛硬币结果和裁判员信息等。

github 收录

惠州市惠阳区年末常住人口信息

惠州市惠阳区年末常住人口,该数据包含了2021年-2022年惠州市惠阳区年末常住人口的数据,应用于惠州市惠阳区人口分析服务场景,经由统计机构统计汇总而成的数据。

开放广东 收录

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录