five

Using digital field notebooks in geoscientific learning in polar environments

收藏
Mendeley Data2024-06-25 更新2024-06-30 收录
下载链接:
https://tandf.figshare.com/articles/dataset/Using_digital_field_notebooks_in_geoscientific_learning_in_polar_environments/11882523
下载链接
链接失效反馈
资源简介:
The emergence of digital tools, including tablets with a multitude of built-in sensors, allows gathering many geological observations digitally and in a geo-referenced context. This is particularly important in the polar environments where (1) limited time is available at each outcrop due to harsh weather conditions, and (2) outcrops are rarely re-visited due to the high economic and environmental cost of accessing the localities and the short field season. In an educational development project, we explored the use of digital field notebooks in student groups of 3–4 persons during five geological field campaigns in the Arctic archipelago of Svalbard. The field campaigns formed part of the Bachelor and Master/PhD courses at the University Centre in Svalbard in Longyearbyen at 78°N. The digital field notebooks comprise field-proofed tablets with relevant applications, notably FieldMove. Questionnaires and analyses of students’ FieldMove projects provided data on student experience of using digital field notebooks, and insight into what students used the digital notebooks for, the notebooks’ functionality and best practices. We found that electronic and geo-referenced note- and photo-taking was by far the dominant function of the digital field notebooks. In addition, some student groups collected significant amounts of structural data using the built-in sensors. Graduate students found the ability to conduct large-scale field mapping and directly display it within the digital field notebook particularly useful. Our study suggests that the digital field notebooks add value to field-based education in polar environments.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

R dataframes of annotated behaviour data and accelerometer data

Annotated data (anno_data.RDATA) is a dataframe containing scored behaviours per second for individual cats. Accelerometer data (accel_data_RDATA) is a dataframe that contains feature engineered accelerometer data in 1 second epochs.

Mendeley Data 收录

laion/open-access-papers

该数据集包含从CORE(core.ac.uk)收集的开放获取学术论文,涵盖不同学科的出版物。每个数据实例代表一篇学术论文,包含唯一标识符、URL、详细的元数据(如DOI、标题、作者、出版日期等)以及全文的路径(如果可用)。数据集的主要语言是英语,但也可能包含其他语言的论文。数据集以WebDataset格式提供,便于流式处理。

hugging_face 收录