PIQA|常识推理数据集|物理知识数据集
收藏
- PIQA数据集首次发表,由OpenAI团队提出,旨在评估常识推理能力。
- PIQA数据集首次应用于多个自然语言处理模型,显著提升了这些模型在常识推理任务上的表现。
CKMImageNet
CKMImageNet是一个旨在推进AI驱动的环境感知无线通信和感知研究的综合数据集,由东南大学国家移动通信研究实验室提供。该数据集整合了位置特定的通道知识数据、高保真环境地图及其视觉表示。CKMImageNet支持多种AI驱动的方法进行通道知识图(CKM)构建,包含监督和非监督、判别和生成AI方法。数据集利用先进的射线追踪技术构建,确保了高保真度和环境准确性。它为AI模型学习环境感知传播模式提供了基础工具,可应用于6G系统的网络规划、资源分配等领域。
arXiv 收录
中文高质量大模型多轮对话SFT数据集
该数据集来源于晴数智慧LLM多领域超自然SFT多轮对话文本数据集。该数据集包含97184轮中文自然对话句子,涉及【家庭生活、教育医疗、军事战争、科学技术、气候环境、人文科学、商业经济、数码产品、体育竞技、休闲娱乐、衣食住行、艺术美术、政治法律、职业发展、宗教信仰】15个主题。领域覆盖多样,也可以单独抽取相关领域的数据进行领域SFT。本次开源的部分数据,由来自中国的644名不同ID的采集人独家贡献,北京晴数智慧科技有限公司进行授权采集。每组对话由两位采集人围绕一个主题展开,上下文对话与当前的内容逻辑相关。适用于训练大模型多轮对话 (back and forth conversation)、上下文逻辑推理能力,以及端到端对话大模型。
OpenDataLab 收录
MAV-VID, Drone-vs-Bird, Anti-UAV
本研究涉及三个数据集:MAV-VID、Drone-vs-Bird和Anti-UAV,总计包含241个视频,共计331,486张图像。这些数据集由杜伦大学创建,用于无人机视觉检测和跟踪的研究。数据集内容丰富,包括从地面和无人机搭载的摄像头捕获的图像,涵盖了多种环境和条件。创建过程中,数据集经过精心标注和处理,以确保数据质量。这些数据集主要用于评估和改进无人机检测和跟踪技术,特别是在复杂环境和动态场景中的应用。
arXiv 收录
Chest X-ray Images (Pneumonia)
该项目使用的数据集来自Kaggle,包含两类胸部X光图像:正常和肺炎。数据集分为训练集和测试集,用于训练和评估深度学习模型,以检测肺炎。
github 收录
VEDAI
用于训练YOLO模型的VEDAI数据集,包含图像和标签,用于目标检测和跟踪。
github 收录