five

Bed elevation, bed surface grain size (D50 and D90), and water discharge- Waal, Pannerden Channel, Nederrijn, and IJssel, 1928-2020

收藏
Mendeley Data2024-03-27 更新2024-06-27 收录
下载链接:
https://data.4tu.nl/datasets/c6e7c1ff-44e6-46f9-9b30-e010e91a97dd
下载链接
链接失效反馈
资源简介:
Rijkswaterstaat has measured bed level along the Rhine branches since 1926 (Bovenrijn-Waal), 1928 (Pannerden Canal- Nederrijn), and 1941 (IJssel). The measurements were done using single beam echo sounders until 1999 and multibeam echo sounders since 1999-2002. Single beam measurements were taken at cross-sections spaced roughly 25 m apart and were averaged over 1 km. Multibeam measurements cover the river's entire length, and 100 m averaged data is provided here. Only cross-section averaged data is provided here. The error in bed elevation data (defined as two times the standard deviation) has been estimated to be up to 0.2-0.5 m until 1990; 0.2-0.3 m between 1990-1999, and 0.05-0.1 m since 1999 (Wiegmann, 2002). Water discharge data at Lobith, Waal, and IJssel have been measured by Rijkswaterstaat using Ott current meters until 1999 and acoustic Doppler current profiler (ADCP) since 2000. Uncertainty related to Ott current meter measurement is smaller than 20% and smaller than 10% for ADCP. Rijkswaterstaat has measured grain size data using digging buckets (until 1984) and grab-samplers (since 1984). We have included data from 1966, 1976, 1984, 2008, 2016, 2017, and 2020 measurement campaigns in this dataset. The samples were taken at cross-sections spaced 500 m to 1 km, with three samples (spaced 65 m) at each cross-section. The uncertainty of grain size data is high due to the high natural Spatio-temporal variability and limited spatial and temporal sampling density.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

Stanford Cars

Cars数据集包含196类汽车的16,185图像。数据被分成8,144训练图像和8,041测试图像,其中每个类被大致分成50-50。类别通常在品牌,型号,年份,例如2012特斯拉Model S或2012 BMW M3 coupe的级别。

OpenDataLab 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

Bloomberg Billionaires Index

Bloomberg Billionaires Index是一个每日更新的全球富豪排行榜,追踪全球最富有的500人的财富变化。该指数涵盖了来自不同行业的亿万富翁,包括科技、金融、零售等领域的顶级富豪。数据集提供了每位富豪的姓名、财富总额、财富来源、所在国家或地区等信息。

www.bloomberg.com 收录

CMNEE(Chinese Military News Event Extraction dataset)

CMNEE(Chinese Military News Event Extraction dataset)是国防科技大学、东南大学和清华大学联合构建的一个大规模的、基于文档标注的开源中文军事新闻事件抽取数据集。该数据集包含17,000份文档和29,223个事件,所有事件均基于预定义的军事领域模式人工标注,包括8种事件类型和11种论元角色。数据集构建遵循两阶段多轮次标注策略,首先通过权威网站获取军事新闻文本并预处理,然后依据触发词字典进行预标注,经领域专家审核后形成事件模式。随后,通过人工分批、迭代标注并持续修正,直至满足既定质量标准。CMNEE作为首个专注于军事领域文档级事件抽取的数据集,对推动相关研究具有显著意义。

github 收录