five

Dumbell—A program to calculate the structure and thermodynamics of a classical fluid of hard, homonuclear diatomic molecules

收藏
Mendeley Data2023-02-23 更新2024-06-26 收录
下载链接:
https://data.mendeley.com/datasets/nws93yhf2g
下载链接
链接失效反馈
资源简介:
Title of program: DUMBELL Catalogue Id: AADS_v1_0 Nature of problem Calculation of the spherical harmonic coefficients of the pair distribution, direct correlation, and other functions of a fluid of hard, homonuclear diatomic molecules and from these its thermodynamics. Versions of this program held in the CPC repository in Mendeley Data AADS_v1_0; DUMBELL; 10.1016/0010-4655(86)90168-2 This program has been imported from the CPC Program Library held at Queen's University Belfast (1969-2019)
创建时间:
2019-12-22
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

Photovoltaic power plant data

包括经纬度、电源板模型、NWP等信息。

github 收录

MIMII数据集

MIMII数据集是由日立有限公司研究与开发集团创建的,专注于工业机器异常声音检测的数据集。该数据集包含26,092个正常操作条件下的声音文件,涵盖阀门、泵、风扇和滑轨四种机器类型。数据集的创建过程中,使用了TAMAGO-03麦克风阵列进行声音采集,并在多个真实工厂环境中混合背景噪声以模拟实际环境。MIMII数据集主要用于机器学习和信号处理社区开发自动化设施维护系统,特别是在无监督学习场景下检测机器异常声音。

arXiv 收录

中国陆地实际蒸散发数据集(1982-2024)

本数据集为基于蒸散发互补方法研制的中国陆地蒸散发数据产品v2.0。输入数据包括CMFD v2的向下短波辐射、向下长波辐射、气温、湿度、风速、气压,GLASS反照率、发射率等,以及ERA5-Land地表温度等。本数据集时间跨度为1982年-2024年,空间范围为中国陆地。本数据集可为研究长时间尺度水循环和气候变化提供基础。陆地实际蒸散发 (Ea),单位: mm/month。 时间分辨率为逐月;空间分辨率为0.1°。数据类型:NetCDF;本数据仅为陆地实际蒸散发,不含水面。

国家青藏高原科学数据中心 收录

UAVDT Dataset

The authors constructed a new UAVDT Dataset focused on complex scenarios with new level challenges. Selected from 10 hours raw videos, about 80, 000 representative frames are fully annotated with bounding boxes as well as up to 14 kinds of attributes (e.g., weather condition, flying altitude, camera view, vehicle category, and occlusion) for three fundamental computer vision tasks: object detection, single object tracking, and multiple object tracking.

datasetninja.com 收录