five

JERS-1 (Japanese Earth Resources Satellite-1)|遥感监测数据集|林业资源数据集

收藏
www.earthdata.nasa.gov2025-01-21 收录
遥感监测
林业资源
下载链接:
https://www.earthdata.nasa.gov/data/catalog/alaska-satellite-facility-distributed-active-archive-center-jers-1-version-1
下载链接
链接失效反馈
资源简介:
The JERS-1 (Japanese Earth Resources Satellite) Synthetic Aperture Radar (SAR) is a high-resolution, all-weather imaging radar. JERS-1 was launched by the Japan Aerospace Exploration Agency (JAXA), aboard a Japanese H-1 launcher.  Its Global Forest Mapping Program mapped important forests of the world: Southeast Asia, Africa, Central America, South America (Amazon Basin), and Boreal North America. ASF distributes the Amazon and Boreal forest SAR mosaics. Dataset PropertyValueTemporal Coverage1992 - 1998Repeat Cycle44 daysSpatial CoverageImagery coverage is worldwideDatapool contains ASF standard beam odd frames, as well as the first and last frame of each imaged swathMosaics of global rainforests and the boreal forestCenter Frequency1.3 GHz L-bandPolarizationHHSpatial Resolution18 mSwath Width75 kmOff-Nadir Angle35°File formatCEOS — Level 0 and Level 1 framedProviderJAXADate published:1992 MissionThe JERS-1 (Japanese Earth Resources Satellite) SAR is a high-resolution, all-weather imaging radar. Its primary objective was gathering data on global land masses while conducting observation for land surveys, agriculture, forestry, fisheries, environmental protection, disaster prevention, and coastal surveillance. LaunchJERS-1 was launched by the National Space Development Agency of Japan (NASDA) aboard a Japanese H-1 launcher, to provide global and repetitive observations of the environment using techniques that allow imaging to occur in all weather conditions. AchievementThe JERS-1 Global Forest Mapping Program mapped important forests of the world: Southeast Asia, Africa, Central America, South America (Amazon Basin), and Boreal North America. ASF distributes the Amazon and Boreal forest SAR mosaics. Downloadable ProductsThe Level 0 and Level 1 products are restricted datasets, and researchers must have permission to download data. Researchers must currently be living in the United States. For information, contact the User Support Office.Level 0 (Unprocessed/Raw Data)Level 1 (amplitude imagery — processed images)Mosaics — open accessAmazon Low FloodAmazon High FloodNorth America Winter TextureNorth America Summer TextureNorth America Summer Backscatter

{'The JERS-1 (Japanese Earth Resources Satellite) Synthetic Aperture Radar (SAR) is a high-resolution, all-weather imaging radar. JERS-1 was launched by the Japan Aerospace Exploration Agency (JAXA), aboard a Japanese H-1 launcher.': '日本地球资源卫星(JERS-1)合成孔径雷达(SAR)是一款高分辨率、全天候成像雷达。JERS-1由日本宇宙探索局(JAXA)发射,搭载于日本H-1运载火箭。', 'Its Global Forest Mapping Program mapped important forests of the world: Southeast Asia, Africa, Central America, South America (Amazon Basin), and Boreal North America. ASF distributes the Amazon and Boreal forest SAR mosaics.': '其全球森林制图计划绘制了世界重要森林的区域:东南亚、非洲、中美洲、南美洲(亚马逊盆地)和北美洲的北方森林。亚马逊和北方森林的SAR镶嵌图由ASF分发。', 'Dataset PropertyValueTemporal Coverage1992 - 1998Repeat Cycle44 daysSpatial CoverageImagery coverage is worldwideDatapool contains ASF standard beam odd frames, as well as the first and last frame of each imaged swath': '数据集属性值时间跨度1992 - 1998重复周期44天空间覆盖影像覆盖范围全球数据池包含ASF标准波束奇数帧,以及每个成像条带的首尾帧', 'Mosaics of global rainforests and the boreal forestCenter Frequency1.3 GHz L-bandPolarizationHHSpatial Resolution18 mSwath Width75 kmOff-Nadir Angle35°File formatCEOS — Level 0 and Level 1 framedProviderJAXADate published:1992': '全球雨林和北方森林的镶嵌图中心频率1.3 GHz L波段极化方式HH空间分辨率18米扫描带宽度75公里旁视角35°文件格式CEOS — 第0级和第1级框架提供者JAXA发布日期:1992', 'MissionThe JERS-1 (Japanese Earth Resources Satellite) SAR is a high-resolution, all-weather imaging radar. Its primary objective was gathering data on global land masses while conducting observation for land surveys, agriculture, forestry, fisheries, environmental protection, disaster prevention, and coastal surveillance.': '任务日本地球资源卫星(JERS-1)SAR是一款高分辨率、全天候成像雷达。其主要目标是在进行土地调查、农业、林业、渔业、环境保护、防灾和海岸监视的同时,收集全球陆地数据。', 'LaunchJERS-1 was launched by the National Space Development Agency of Japan (NASDA) aboard a Japanese H-1 launcher, to provide global and repetitive observations of the environment using techniques that allow imaging to occur in all weather conditions.': '发射JERS-1由日本国家航天开发局(NASDA)在H-1运载火箭上发射,旨在利用能够在各种天气条件下进行成像的技术,提供全球和重复的环境观测。', 'AchievementThe JERS-1 Global Forest Mapping Program mapped important forests of the world: Southeast Asia, Africa, Central America, South America (Amazon Basin), and Boreal North America. ASF distributes the Amazon and Boreal forest SAR mosaics.': '成就日本地球资源卫星(JERS-1)全球森林制图计划绘制了世界重要森林的区域:东南亚、非洲、中美洲、南美洲(亚马逊盆地)和北美洲的北方森林。亚马逊和北方森林的SAR镶嵌图由ASF分发。', 'Downloadable ProductsThe Level 0 and Level 1 products are restricted datasets, and researchers must have permission to download data. Researchers must currently be living in the United States. For information, contact the User Support Office.Level 0 (Unprocessed/Raw Data)Level 1 (amplitude imagery — processed images)Mosaics — open accessAmazon Low FloodAmazon High FloodNorth America Winter TextureNorth America Summer TextureNorth America Summer Backscatter': '可下载产品第0级和第1级产品为受限数据集,研究人员必须获得下载数据的许可。目前研究人员必须居住在美国。如需信息,请联系用户支持办公室。第0级(未处理/原始数据)第1级(振幅影像—处理后的图像)镶嵌图—公开访问亚马逊低洪水亚马逊高洪水北美冬季纹理北美夏季纹理北美夏季后向散射'}
提供机构:
Earthdata
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录

中国高分辨率高质量PM2.5数据集(2000-2023)

ChinaHighPM2.5数据集是中国高分辨率高质量近地表空气污染物数据集(ChinaHighAirPollutants, CHAP)中PM2.5数据集。该数据集利用人工智能技术,使用模式资料填补了卫星MODIS MAIAC AOD产品的空间缺失值,结合地基观测、大气再分析和排放清单等大数据生产得到2000年至今全国无缝隙地面PM2.5数据。数据十折交叉验证决定系数R2为0.92,均方根误差RMSE为10.76 µg/m3。主要范围为整个中国地区,空间分辨率为1 km,时间分辨率为日、月、年,单位为µg/m3。注意:该数据集持续更新,如需要更多数据,请发邮件联系作者(weijing_rs@163.com; weijing@umd.edu)。 数据文件中包含NC转GeoTiff的四种代码(Python、Matlab、IDL和R语言)nc2geotiff codes。

国家青藏高原科学数据中心 收录

RadDet

RadDet是一个包含11种雷达类别的数据集,包括6种新的低概率干扰(LPI)多相码(P1, P2, P3, P4, Px, Zadoff-Chu)和一种新的宽带调频连续波(FMCW)。数据集覆盖500 MHz频段,包含40,000个雷达帧,分为训练集、验证集和测试集。数据集在两种不同的雷达环境中提供:稀疏数据集(RadDet-1T)和密集数据集(RadDet-9T)。

github 收录

MLPerf Power

MLPerf Power数据集由MLCommons开发,旨在评估从微瓦到兆瓦级别机器学习系统的能效。该数据集包含1841条来自60个不同系统的测量数据,覆盖了从物联网设备到大型数据中心的广泛应用场景。数据集的创建过程涉及多个组织的协作,确保了测量方法的一致性和可比性。MLPerf Power数据集主要用于研究机器学习系统的能效优化,旨在为未来的可持续AI解决方案提供基准。

arXiv 收录