five

青州市级年检事项目录|政府管理数据集|年度检查数据集

收藏
山东公共数据开放网2023-11-28 更新2024-03-04 收录
政府管理
年度检查
下载链接:
https://data.sd.gov.cn/portal/catalog/82b05947506a4351873ff554e22b94b4
下载链接
链接失效反馈
资源简介:
实施年检单位、年检名称
提供机构:
潍坊市青州市
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

核电厂焊缝射线质量智能评定模型数据

1.对核电厂焊缝射线质量、缺陷进行智能精准识别与评定,为核电厂焊缝射线质量智能评定模型提供训练数据,提高核电厂焊缝射线评定标准的准确性,进一步提升核电厂焊缝射线质量。 2.能够为核电厂焊缝质量控制提供决策依据,通过焊缝质量、缺陷训练数据持续优化模型检测标准,进一步保障核电站设备安全和长期稳定运行。数据收集和处理: 步骤1数据收集:方式一:通过使用数字射线检测设备采集获取原始焊缝图像数据;方式二:通过高分辨率扫描设备对传统射线底片影像数据转化为原始焊缝图像数据。 步骤2数据处理:对收集到的原始焊缝图像数据进行图像预处理,去除图像噪声、矫正图像畸变,统一图像尺寸(将图像的高度(imageHeight)和宽度(imageWidth)统一为3580×780(像素),确保原始焊缝图像数据质量和一致性。 步骤3数据标注:使用图像标注工具对原始焊缝图像数据的Filename(文件名)、Shapes(形状)、imagePath(路径)、imageData(图像数据)、imageHeight(图像高度)、imageWidth(图像宽度)等字段进行数据标注。其中:Filename(文件名)按照image_XXX.json按序号依次标注;Shapes(形状)字段中的label(标签)用于标注缺陷类型,缺陷类型标签包括5个缺陷等级:liewen(裂纹)、qikong(气孔)、jiazha(夹渣)、weironghe(未熔合)、weihantou(未焊透),points(位置)用于标记缺陷在图像中的位置,通过坐标的形式进行标注,shape_type(形状类型)为用于框选缺陷的形状,在本数据标注过程中均使用rectangle(矩形)框进行框选,在同一个焊缝图像数据中可能存在多个缺陷,在进行数据标注的过程中Shapes(形状)可能包含多个缺陷;imagePath(路径)用于标记生成标注文件的存储位置,存储在图像的同一路径(文件夹)下;imageData(图像数据)为对通过数据收集阶段获取到的原始焊缝图像数据进行标注,按照image_XXX.tiff进行命名存储;对图像高度(imageHeight)和宽度(imageWidth)分别标注为3580和780。通过以上数据标注过程确保为后续模型训练提供高质量的标注数据。 通过使用核电厂焊缝射线质量智能评定模型数据能够构建例如:卷积神经网络(CNN)的自动识别模型,实现核电厂焊缝射线图像缺陷的自动识别并和缺陷类型的标注,辅助人工评定工作,提升检测效率和准确度。

浙江省数据知识产权登记平台 收录

MNIST数据集

‌数据规模‌ ‌训练集‌:60,000 张手写数字图像(28×28 像素灰度图)及对应标签 34。 ‌测试集‌:10,000 张图像与标签,用于模型评估 68。 ‌数据来源‌ 由美国国家标准与技术研究院(NIST)收集,50% 样本来自高中生手写,50% 来自人口普查局工作人员 48。 经 Yann LeCun 团队标准化处理,成为机器学习基准数据集 1011。

阿里云天池 收录

PU Dataset

德国帕德博恩大学(PU)轴承故障诊断数据集提供了丰富的轴承故障信号数据,包括内圈、外圈和滚动体故障等多种类型的轴承故障。与其他数据集相比,PU数据集的特色在于包含了大量的电机驱动系统故障数据,为轴承故障诊断研究提供了一个全面的实验平台。

github 收录

OpenML-CC18

我们提倡使用经过整理的、全面的机器学习数据集基准测试套件,以标准化的基于 OpenML 的接口和用 Python、Java 和 R 编写的互补软件工具包为后盾。我们展示了如何使用标准化的基于 OpenML 的基准测试套件轻松执行全面的基准测试研究以及用 Python、Java 和 R 编写的互补软件工具包。 OpenML 基准测试套件的主要显着特点是 (i) 通过标准化数据格式、API 和现有客户端库易于使用; (ii) 关于套件内容的机器可读元信息; (iii) 在线共享结果,实现大规模比较。作为第一个这样的套件,我们提出了 OpenML-CC18,这是一个机器学习基准套件,包含 72 个分类数据集,从 OpenML 上的数千个数据集中精心策划。纳入标准是: * 密集数据集独立观察的分类任务 * 类数 >= 2,每个类至少有 20 个观察和少数类与多数类的比例必须超过 5% * 500 <= 观察数 <= 100000 * one-hot-encoding 后的特征数量 < 5000 * 没有人工数据集 * 没有更大数据集的子集,也没有其他数据集的二值化 * 没有可以通过使用单个特征或使用简单的决策树来完全预测的数据集* 来源或参考可用 如果您使用此基准测试套件,请引用:Bernd Bischl、Giuseppe Casalicchio、Matthias Feurer、Frank Hutter、Michel Lang、Rafael G. Mantovani、Jan N. van Rijn 和 Joaquin Vanschoren。 “OpenML 基准测试套件”arXiv:1708.03731v2 [stats.ML] (2019)。 @article{oml-benchmarking-suites, title={OpenML Benchmarking Suites}, author={Bernd Bischl and Giuseppe Casalicchio and Matthias Feurer and Frank Hutter and Michel Lang and Rafael G. Mantovani and Jan N. van Rijn and Joaquin Vanschoren},年={2019},日记={arXiv:1708.03731v2 [stat.ML]} }

OpenDataLab 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录