five

Ballast Water Tank Dataset|船舶检查数据集|无人机监测数据集

收藏
github2024-03-26 更新2024-05-31 收录
船舶检查
无人机监测
下载链接:
https://github.com/ntnu-arl/ballast_water_tank_dataset
下载链接
链接失效反馈
资源简介:
该数据集是从三艘船的压载水舱中收集的,使用RMF-Owl无人机和手持传感器Mjolnir进行数据采集。数据集包括自主探索和检查任务的飞行数据,以及额外的手动飞行数据。
创建时间:
2024-01-25
原始信息汇总

数据集概述

数据集名称

Ballast Water Tank Dataset

数据集来源

数据集来源于三艘船的压载水舱,分别标记为“FPSO1”, “FPSO2”, 和 “Oil Tanker” (OT)。

数据收集平台

  1. RMF-Owl: 一种碰撞容忍的空中机器人。
  2. Mjolnir: 手持传感器设置。

传感器配置

传感器 RMF-Owl Mjolnir (Sensor Stick)
LiDAR Ouster OS0-64 (Rev-D) Ouster OS0-64 (Rev-D)
Camera Flir Blackfly S 0.4MP Color Flir Blackfly S 0.4MP Mono (x2)
IMU Vectornav VN100 Vectornav VN100
Radar - Texas Instruments IWR6843AOP-EVM Radar

任务概览

RMF-Owl
No. Ship Section Autonomous Multi-level Duration (s)
1 FPSO1 side Yes No 225
2 FPSO1 side Yes No 300
3 FPSO1 side Yes No 154
4 FPSO1 side No Yes 450
5 FPSO2 side Yes No 300
6 FPSO2 side Yes No 380
7 FPSO2 bilge Yes No 336
8 FPSO2 double bottom Yes No 200
9 FPSO2 side No Yes 258
10 FPSO2 bilge, double bottom No No 275
11 OT side Yes No 214
12 OT side Yes No 216
13 OT side Yes No 354
14 OT side Yes No 360
15 OT side Yes No 370
Mjolnir
No. Ship Section Autonomous Multi-level Duration (s)
1 FPSO1 side N/A No 268
2 FPSO1 side N/A No 373
3 FPSO1 side N/A No 357
4 FPSO1 side N/A No 395

数据隐私

为保护隐私,图像中的人脸已被模糊处理。

AI搜集汇总
数据集介绍
main_image_url
构建方式
该数据集源自三艘船舶的压载水舱,分别为FPSO1、FPSO2和油轮(OT)。数据采集采用了两种平台:RMF-Owl,一种抗碰撞的空中机器人,以及手持传感器装置Mjolnir。RMF-Owl的数据包括自主探索和检查任务的飞行记录,以及额外的手动飞行数据。Mjolnir则通过手持方式进行数据采集。传感器配置包括LiDAR、相机、IMU和雷达,确保了数据的多样性和全面性。
特点
该数据集的显著特点在于其多源传感器数据的融合,涵盖了LiDAR、相机、IMU和雷达等多种传感器类型。此外,数据集包含了自主飞行和手动采集两种模式,提供了丰富的数据多样性。数据隐私方面,所有包含人脸的图像均进行了模糊处理,确保了数据的安全性和合规性。
使用方法
使用该数据集时,研究者可以利用RMF-Owl和Mjolnir的数据进行多传感器融合分析,以提升对压载水舱环境的理解和建模。数据集的多样性使得其在机器人导航、环境感知和故障检测等领域具有广泛的应用潜力。研究者需注意,由于数据隐私保护,所有包含人脸的图像已进行模糊处理,使用时应遵守相关隐私保护规定。
背景与挑战
背景概述
在海洋工程与机器人技术的交叉领域,Ballast Water Tank Dataset的创建标志着对船舶压载水舱检测技术的重大进步。该数据集由三个匿名船舶(FPSO1、FPSO2和Oil Tanker)的压载水舱数据组成,通过RMF-Owl无人机和手持传感器Mjolnir收集。RMF-Owl是一种碰撞容忍型空中机器人,其数据包括自主探索和检查任务的飞行记录,以及额外的人工飞行数据。该数据集的创建不仅提升了对压载水舱内部环境的理解,还为相关领域的研究提供了宝贵的资源,特别是在船舶维护和安全检测方面。
当前挑战
Ballast Water Tank Dataset在构建过程中面临多项挑战。首先,数据收集环境复杂,压载水舱内部结构多样且空间有限,对无人机的自主导航和传感器精度提出了高要求。其次,数据隐私问题也是一个重要考量,所有图像中的人脸均需进行模糊处理。此外,数据集的多样性和代表性也是一个挑战,确保从不同船舶和不同部分收集的数据能够全面反映压载水舱的实际情况。最后,数据集的标注和处理需要高度专业化的知识,以确保数据的准确性和可用性。
常用场景
经典使用场景
在海洋工程领域,Ballast Water Tank Dataset 主要用于船舶压载水舱的自主检测与监控。通过搭载RMF-Owl无人机和手持传感器Mjolnir,该数据集记录了多艘船舶压载水舱的详细数据,包括LiDAR、相机和IMU等传感器信息。这些数据为研究船舶结构健康监测、自主导航和环境感知提供了宝贵的资源。
衍生相关工作
基于Ballast Water Tank Dataset,研究者们开展了多项相关工作,包括改进自主导航算法、优化多传感器数据融合技术以及开发新的目标识别模型。这些研究不仅提升了数据集的应用价值,还为海洋工程领域的技术创新提供了新的思路和方法。
数据集最近研究
最新研究方向
在船舶工程领域,Ballast Water Tank Dataset的最新研究方向主要集中在利用先进的机器人技术和传感器系统进行船舶压载水舱的自动化检测与监控。通过结合RMF-Owl无人机和Mjolnir手持传感器的多模态数据,研究人员致力于开发高效的自主导航和环境感知算法,以提升船舶维护和安全性能。此外,该数据集的应用还扩展到海洋环境保护和法规遵从性研究,特别是在压载水处理和排放监测方面,具有重要的实际意义和科学价值。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

PCLT20K

PCLT20K数据集是由湖南大学等机构创建的一个大规模PET-CT肺癌肿瘤分割数据集,包含来自605名患者的21,930对PET-CT图像,所有图像都带有高质量的像素级肿瘤区域标注。该数据集旨在促进医学图像分割研究,特别是在PET-CT图像中肺癌肿瘤的分割任务。

arXiv 收录

Solar Radiation Data

该数据集包含全球多个地点的太阳辐射数据,涵盖了不同时间段和气象条件下的辐射强度。数据包括直接辐射、散射辐射和总辐射等指标,适用于太阳能资源评估和气候研究。

www.nrel.gov 收录

中国省级灾害统计空间分布数据集(1999-2020年)

该数据集为中国省级灾害统计空间分布数据集,时间为1999-2020年。该数据集包含中国各省自然灾害、地质灾害、地震灾害、森林火灾、森林病虫鼠害、草原灾害六类灾害的详细数据。数据量为206MB,数据格式为excel。

国家地球系统科学数据中心 收录

ChinaTravel

ChinaTravel是由南京大学国家重点实验室开发的一个真实世界基准数据集,专门用于评估语言代理在中国旅行规划中的应用。该数据集涵盖了中国10个最受欢迎城市的旅行信息,包括720个航班和5770趟列车,以及3413个景点、4655家餐厅和4124家酒店的详细信息。数据集通过问卷调查收集用户需求,并设计了一个可扩展的领域特定语言来支持自动评估。ChinaTravel旨在解决复杂的真实世界旅行规划问题,特别是在多兴趣点行程安排和用户偏好满足方面,为语言代理在旅行规划中的应用提供了重要的测试平台。

arXiv 收录