five

湛江市坡头区人民政府办公室行政检查事项清单|政府行政管理数据集|公开透明数据集

收藏
开放广东2022-09-19 更新2024-02-29 收录
政府行政管理
公开透明
下载链接:
https://gddata.gd.gov.cn/opdata/base/collect?chooseValue=collectForm
下载链接
链接失效反馈
资源简介:
该数据是2021年来广东省湛江市坡头区人民政府办公室行政检查事项清单,包括实施部门名称、基本编码、主项名称、子项名称、实施清单名称、事项类型等数据字段,方便群众了解相关权责事项。
提供机构:
湛江市
创建时间:
2022-09-24
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录

MVIP

MVIP是一个面向应用的多视角和多模态工业零件识别数据集,由弗劳恩霍夫IPK研究所创建。该数据集包含了校准过的RGBD多视角图像以及对象的物理属性、自然语言描述和超类别等信息。数据集共包含约570,000张图像,分为训练集、验证集和测试集,适用于工业零件识别相关的研究,旨在解决小样本学习、视觉相似零件识别等问题。

arXiv 收录

中国逐日格点降水数据集V2(1960–2024,0.1°)

CHM_PRE V2数据集是一套高精度的中国大陆逐日格点降水数据集。该数据集基于1960年至今共3476个观测站的长期日降水观测数据,并纳入11个降水相关变量,用于表征降水的相关性。数据集采用改进的反距离加权方法,并结合基于机器学习的LGBM算法构建。CHM_PRE V2与现有的格点降水数据集(包括CHM_PRE V1、GSMaP、IMERG、PERSIANN-CDR和GLDAS)表现出良好的时空一致性。数据集基于63,397个高密度自动雨量站2015–2019年的观测数据进行验证,发现该数据集显著提高了降水测量精度,降低了降水事件的高估,为水文建模和气候评估提供了可靠的基础。CHM_PRE V2 数据集提供分辨率为0.1°的逐日降水数据,覆盖整个中国大陆(18°N–54°N,72°E–136°E)。该数据集涵盖1960–2024年,并将每年持续更新。日值数据以NetCDF格式提供,为了方便用户,我们还提供NetCDF和GeoTIFF格式的年度和月度总降水数据。

国家青藏高原科学数据中心 收录

鱼类目标检测数据集

本数据集专为改进YOLOv8的鱼类目标检测系统而设计,包含了丰富的鱼类图像数据,旨在为研究人员和开发者提供一个高质量的训练基础。数据集的总图像数量达到了7480张,涵盖了30个不同的鱼类类别,展现了水生生态系统的多样性和复杂性。这些图像不仅为模型训练提供了充足的样本,还确保了模型在实际应用中的泛化能力。

github 收录

SeaDronesSee

SeaDronesSee是由德国图宾根大学认知系统组创建的大型视觉对象检测和跟踪基准,专注于海洋环境中的人类检测。该数据集包含超过54,000帧,总计400,000个实例,从不同高度和视角(5至260米,0至90度)捕获,并提供详细的元信息。数据集的创建旨在填补陆基视觉系统与海基系统之间的差距,特别适用于无人机辅助的海上搜救任务。SeaDronesSee通过提供精确的元数据,如高度、视角和速度,支持多模态系统的开发,以提高检测的准确性和速度。此外,数据集还包括多光谱图像,利用非可见光谱(如近红外和红边光谱)来增强人类检测能力。

arXiv 收录