Chandra X-ray Observatory ObsId 3356
收藏N-MNIST (Neuromorphic-MNIST)
简要说明 Neuromorphic-MNIST (N-MNIST) 数据集是原始基于帧的 MNIST 数据集的尖峰版本。它由与原始 MNIST 数据集相同的 60 000 个训练样本和 10 000 个测试样本组成,并以与原始 MNIST 数据集(28x28 像素)相同的视觉比例捕获。 N-MNIST 数据集是通过将 ATIS 传感器安装在电动云台装置上并让传感器在 LCD 监视器上查看 MNIST 示例时移动来捕获的,如本视频所示。可以在下面的论文中找到对数据集及其创建方式的完整描述。如果您使用数据集,请引用本文。果园,G。科恩,G。贾亚万特,A。和 Thakor, N. “Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades”,《神经科学前沿》,第 9 卷,第 437 期,2015 年 10 月
OpenDataLab 收录
O*NET
O*NET(Occupational Information Network)是一个综合性的职业信息数据库,提供了关于各种职业的详细描述,包括技能要求、工作活动、知识领域、工作环境等。该数据集被广泛用于职业分析、教育和劳动力市场研究。
www.onetonline.org 收录
MNIST数据集
数据规模 训练集:60,000 张手写数字图像(28×28 像素灰度图)及对应标签 34。 测试集:10,000 张图像与标签,用于模型评估 68。 数据来源 由美国国家标准与技术研究院(NIST)收集,50% 样本来自高中生手写,50% 来自人口普查局工作人员 48。 经 Yann LeCun 团队标准化处理,成为机器学习基准数据集 1011。
阿里云天池 收录
Hospital Deterioration Dataset
这是一个高保真模拟医院队列数据集,包含10,000个模拟医院入院记录,每个记录跟踪最多72小时。数据集提供每小时的生命体征(心率、血压、呼吸频率等)和实验室数值(白细胞计数、乳酸、肌酐等),以及患者人口统计学信息和多种恶化结果标签。专门设计用于构建和基准测试早期预警系统和临床恶化风险模型的机器学习应用。
github 收录
YouTube-English
该数据集包含从各种YouTube频道提取的英语音频片段以及相应的转录元数据。数据用于训练自动语音识别(ASR)模型。数据来源于YouTube频道,处理过程包括下载、分割和保存音频及元数据。数据集总结部分详细列出了每个频道的视频数量、持续时间和占总数据集的百分比。
huggingface 收录
