five

Fixed Income Data | Credit Quality | Bond Fair Value | 3,300+ Global Issuers | 80,000+ Bonds | Portfolio Construction | Quant Data | Risk Management

收藏
Datarade2024-12-14 收录
下载链接:
https://datarade.ai/data-products/fixed-income-data-credit-quality-bond-fair-value-3-300-lucror-analytics
下载链接
链接失效反馈
资源简介:
Lucror Analytics: Proprietary Fixed Income Data for Credit Quality & Bond Valuation At Lucror Analytics, we provide cutting-edge corporate data solutions tailored to fixed income professionals and organizations in the financial sector. Our datasets encompass issuer and issue-level credit quality, bond fair value metrics, and proprietary scores designed to offer nuanced, actionable insights into global bond markets that help you stay ahead of the curve. Covering over 3,300 global issuers and over 80,000 bonds, we empower our clients to make data-driven decisions with confidence and precision. By leveraging our proprietary C-Score, V-Score , and V-Score I models, which utilize CDS and OAS data, we provide unparalleled granularity in credit analysis and valuation. Whether you are a portfolio manager, credit analyst, or institutional investor, Lucror’s data solutions deliver actionable insights to enhance strategies, identify mispricing opportunities, and assess market trends. What Makes Lucror’s Fixed Income Data Unique? Proprietary Credit and Valuation Models Our proprietary C-Score, V-Score, and V-Score I are designed to provide a deeper understanding of credit quality and bond valuation: C-Score: A composite score (0-100) reflecting an issuer's credit quality based on market pricing signals such as CDS spreads. Responsive to near-real-time market changes, the C-Score offers granular differentiation within and across credit rating categories, helping investors identify mispricing opportunities. V-Score: Measures the deviation of an issue’s option-adjusted spread (OAS) from the market fair value, indicating whether a bond is overvalued or undervalued relative to the market. V-Score I: Similar to the V-Score but benchmarked against industry-specific fair value OAS, offering insights into relative valuation within an industry context. Comprehensive Global Coverage Our datasets cover over 3,300 issuers and 80,000 bonds across global markets, ensuring 90%+ overlap with prominent IG and HY benchmark indices. This extensive coverage provides valuable insights into issuers across sectors and geographies, enabling users to analyze issuer and market dynamics comprehensively. Data Customization and Flexibility We recognize that different users have unique requirements. Lucror Analytics offers tailored datasets delivered in customizable formats, frequencies, and levels of granularity, ensuring that our data integrates seamlessly into your workflows. High-Frequency, High-Quality Data Our C-Score, V-Score, and V-Score I models and metrics are updated daily using end-of-day (EOD) data from S&P. This ensures that users have access to current and accurate information, empowering timely and informed decision-making. How Is the Data Sourced? Lucror Analytics employs a rigorous methodology to source, structure, transform and process data, ensuring reliability and actionable insights: Proprietary Fixed Income Data Models: Our scores are derived from proprietary quant algorithms based on CDS spreads, OAS, and other issuer and bond data. Global Data Partnerships: Our collaborations with S&P and other reputable data providers ensure comprehensive and accurate datasets. Data Cleaning and Structuring: Advanced processes ensure data integrity, transforming raw inputs into actionable insights. Primary Use Cases 1. Portfolio Construction & Rebalancing Lucror’s C-Score provides a granular view of issuer credit quality, allowing portfolio managers to evaluate risks and identify mispricing opportunities. With CDS-driven insights and daily updates, clients can incorporate near-real-time issuer/bond movements into their credit assessments. 2. Portfolio Optimization The V-Score and V-Score I allow portfolio managers to identify undervalued or overvalued bonds, supporting strategies that optimize returns relative to credit risk. By benchmarking valuations against market and industry standards, users can uncover potential mean-reversion opportunities and enhance portfolio performance. 3. Risk Management With data updated daily, Lucror’s models provide dynamic insights into market risks. Organizations can use this data to monitor shifts in credit quality, assess valuation anomalies, and adjust exposure proactively. 4. Strategic Decision-Making Our comprehensive datasets enable financial institutions to make informed strategic decisions. Whether it’s assessing the fair value of bonds, analyzing industry-specific credit spreads, or understanding broader market trends, Lucror’s data delivers the depth and accuracy required for success. Why Choose Lucror Analytics? Lucror Analytics is committed to providing high-quality, actionable data solutions tailored to the evolving needs of the financial sector. Our unique combination of proprietary models, rigorous sourcing of high-quality data, and customizable delivery ensures that users have the insights they need to make smarter decisions. By choosing Lucror Analytics, you can: - Access nuanced credit quality and bond valuation metrics. - Identify mispricing opportunities within and across industries. - Incorporate market-driven data into your workflows. - Enhance risk management and regulatory compliance efforts. Whether you’re navigating complex credit markets, optimizing portfolios, or meeting regulatory demands, Lucror Analytics equips you with the tools to succeed in today’s dynamic financial environment. Contact us today to learn how our data solutions can empower your strategic objectives.
提供机构:
Lucror Analytics
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

alpacaGPT4_llama8b-v120-jb-seed2-alpaca_512_ngt0.7_tp0.9

该数据集包含了用户和助手之间的对话,具有用户和助手发言的文本特征,以及一个索引级别特征。数据集分为训练集,共有52001条对话记录。

huggingface 收录

RETQA

RETQA是由北京师范大学创建的第一个大规模开放领域中文表格问答数据集,专门针对房地产领域。该数据集包含4932个表格和20762个问答对,涵盖16个子领域,涉及房产信息、房地产公司财务信息和土地拍卖信息。数据集通过从中国八个主要城市的公开数据源收集并清洗整理,每个表格都配有摘要标题以辅助检索。RETQA的创建过程包括表格收集、问答对生成、意图和槽标签注释以及查询重写和质量控制。该数据集主要用于解决房地产领域的开放域和长表格问答问题,推动表格问答技术的发展。

arXiv 收录

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录

OpenSonarDatasets

OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。

github 收录