肇庆市鼎湖区发展和改革局双随机统计数据信息|政府统计数据数据集|数据分析数据集
收藏ICLR Peer Review and Rebuttal Process Dataset
该数据集包含从ICLR 2024和2025年收集的同行评审和反驳过程数据,数据来自OpenReview平台,包括评审者ID、初始评分和反驳后评分。评审者评分变化被追踪,使用追踪分数指标来评估评审者连续性,分数≤1表示有效使用,≥2需双重检查。数据许可证为CC BY 4.0。
github 收录
核电厂焊缝射线质量智能评定模型数据
1.对核电厂焊缝射线质量、缺陷进行智能精准识别与评定,为核电厂焊缝射线质量智能评定模型提供训练数据,提高核电厂焊缝射线评定标准的准确性,进一步提升核电厂焊缝射线质量。 2.能够为核电厂焊缝质量控制提供决策依据,通过焊缝质量、缺陷训练数据持续优化模型检测标准,进一步保障核电站设备安全和长期稳定运行。数据收集和处理: 步骤1数据收集:方式一:通过使用数字射线检测设备采集获取原始焊缝图像数据;方式二:通过高分辨率扫描设备对传统射线底片影像数据转化为原始焊缝图像数据。 步骤2数据处理:对收集到的原始焊缝图像数据进行图像预处理,去除图像噪声、矫正图像畸变,统一图像尺寸(将图像的高度(imageHeight)和宽度(imageWidth)统一为3580×780(像素),确保原始焊缝图像数据质量和一致性。 步骤3数据标注:使用图像标注工具对原始焊缝图像数据的Filename(文件名)、Shapes(形状)、imagePath(路径)、imageData(图像数据)、imageHeight(图像高度)、imageWidth(图像宽度)等字段进行数据标注。其中:Filename(文件名)按照image_XXX.json按序号依次标注;Shapes(形状)字段中的label(标签)用于标注缺陷类型,缺陷类型标签包括5个缺陷等级:liewen(裂纹)、qikong(气孔)、jiazha(夹渣)、weironghe(未熔合)、weihantou(未焊透),points(位置)用于标记缺陷在图像中的位置,通过坐标的形式进行标注,shape_type(形状类型)为用于框选缺陷的形状,在本数据标注过程中均使用rectangle(矩形)框进行框选,在同一个焊缝图像数据中可能存在多个缺陷,在进行数据标注的过程中Shapes(形状)可能包含多个缺陷;imagePath(路径)用于标记生成标注文件的存储位置,存储在图像的同一路径(文件夹)下;imageData(图像数据)为对通过数据收集阶段获取到的原始焊缝图像数据进行标注,按照image_XXX.tiff进行命名存储;对图像高度(imageHeight)和宽度(imageWidth)分别标注为3580和780。通过以上数据标注过程确保为后续模型训练提供高质量的标注数据。 通过使用核电厂焊缝射线质量智能评定模型数据能够构建例如:卷积神经网络(CNN)的自动识别模型,实现核电厂焊缝射线图像缺陷的自动识别并和缺陷类型的标注,辅助人工评定工作,提升检测效率和准确度。
浙江省数据知识产权登记平台 收录
CE-CSL
CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。
arXiv 收录
DIPSEER: A Dataset for In-Person Student Emotion and Engagement Recognition in the Wild
DIPSEER是一个用于识别学生情绪和参与度的数据集,包含图像、标签和传感器数据。
github 收录
EdNet
displayName: EdNet license: - CC BY-NC 4.0 paperUrl: https://arxiv.org/pdf/1912.03072v3.pdf publishDate: "2019" publishUrl: https://github.com/riiid/ednet publisher: - University of Michigan - Yale University - University of California, Berkeley - Riiid AI Research tags: - Student Activities taskTypes: - Knowledge Tracing --- # 数据集介绍 ## 简介 圣诞老人收集的各种学生活动的大规模分层数据集,一个配备人工智能辅导系统的多平台自学解决方案。 EdNet 包含 2 年多来收集的 784,309 名学生的 131,441,538 次互动,这是迄今为止向公众发布的 ITS 数据集中最大的。资料来源:EdNet:教育中的大规模分层数据集 ## 引文 ``` @inproceedings{choi2020ednet, title={Ednet: A large-scale hierarchical dataset in education}, author={Choi, Youngduck and Lee, Youngnam and Shin, Dongmin and Cho, Junghyun and Park, Seoyon and Lee, Seewoo and Baek, Jineon and Bae, Chan and Kim, Byungsoo and Heo, Jaewe}, booktitle={International Conference on Artificial Intelligence in Education}, pages={69--73}, year={2020}, organization={Springer} } ``` ## Download dataset :modelscope-code[]{type="git"}
魔搭社区 收录
