five

Gridded products of global river methane concentrations, flux rates and emissions

收藏
Mendeley Data2024-05-10 更新2024-06-27 收录
下载链接:
https://zenodo.org/records/8108959
下载链接
链接失效反馈
资源简介:
Information on the products on this repository These data is created using the R scripts with the random forest models and upscaling procedures found in: https://github.com/rocher-ros/RiverMethaneFlux. Raw files to reproduce this product can be found in https://doi.org/10.5281/zenodo.7733604 The results of this analysis are published in the article "Global Methane emissions form rivers and streams" (in Nature) (https://doi.org/10.1038/s41586-023-06344-6). Main author is Gerard Rocher-Ros, for which correspondence can be sent to g.rocher.ros@gmail.com Units of the variables in the product are: -River methane concentration: mmol CH4 m-3 -River methane diffusive flux rates: mmol CH4 m-2 d-1 (of river area) -River methane diffusive emissions: Mega grams of C-CH4 (for each pixel). The spatial resolution of the product is 0.25 degrees (which corresponds to around 27 km). The files are in WGS84. There are four main products in this folder, packed as geotiff files, and described below. + The file "river_methane_yearly.tiff" contains three layers: - Yearly average river CH4 concentrations (ch4_conc_avg) - Yearly average river CH4 diffusive flux rates (ch4_flux_avg) - Yearly total river CH4 diffusive emissions (ch4_emissions_year) + The file "river_methane_concs_monthly.tiff" contains twelve layers, with the modelled river methane concentrations for each month. + The file "river_methane_flux_monthly.tiff" contains twelve layers, with the modelled river methane flux rates for each month. + The file "river_methane_emissions_monthly.tiff" contains twelve layers, with the total river methane emissions for each month.
创建时间:
2023-07-14
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Google Scholar

Google Scholar是一个学术搜索引擎,旨在检索学术文献、论文、书籍、摘要和文章等。它涵盖了广泛的学科领域,包括自然科学、社会科学、艺术和人文学科。用户可以通过关键词搜索、作者姓名、出版物名称等方式查找相关学术资源。

scholar.google.com 收录

HIT-UAV

HIT-UAV数据集包含2898张红外热成像图像,这些图像从43,470帧无人机拍摄的画面中提取。数据集涵盖了多种场景,如学校、停车场、道路和游乐场,在不同的光照条件下,包括白天和夜晚。

github 收录

全国 1∶200 000 数字地质图(公开版)空间数据库

As the only one of its kind, China National Digital Geological Map (Public Version at 1∶200 000 scale) Spatial Database (CNDGM-PVSD) is based on China' s former nationwide measured results of regional geological survey at 1∶200 000 scale, and is also one of the nationwide basic geosciences spatial databases jointly accomplished by multiple organizations of China. Spatially, it embraces 1 163 geological map-sheets (at scale 1: 200 000) in both formats of MapGIS and ArcGIS, covering 72% of China's whole territory with a total data volume of 90 GB. Its main sources is from 1∶200 000 regional geological survey reports, geological maps, and mineral resources maps with an original time span from mid-1950s to early 1990s. Approved by the State's related agencies, it meets all the related technical qualification requirements and standards issued by China Geological Survey in data integrity, logic consistency, location acc racy, attribution fineness, and collation precision, and is hence of excellent and reliable quality. The CNDGM-PVSD is an important component of China' s national spatial database categories, serving as a spatial digital platform for the information construction of the State's national economy, and providing informationbackbones to the national and provincial economic planning, geohazard monitoring, geological survey, mineral resources exploration as well as macro decision-making.

DataCite Commons 收录

OpenSonarDatasets

OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。

github 收录

SeaDronesSee

SeaDronesSee是由德国图宾根大学认知系统组创建的大型视觉对象检测和跟踪基准,专注于海洋环境中的人类检测。该数据集包含超过54,000帧,总计400,000个实例,从不同高度和视角(5至260米,0至90度)捕获,并提供详细的元信息。数据集的创建旨在填补陆基视觉系统与海基系统之间的差距,特别适用于无人机辅助的海上搜救任务。SeaDronesSee通过提供精确的元数据,如高度、视角和速度,支持多模态系统的开发,以提高检测的准确性和速度。此外,数据集还包括多光谱图像,利用非可见光谱(如近红外和红边光谱)来增强人类检测能力。

arXiv 收录