five

GobBsAsTweets: Twitter Dataset of Local Governments in Buenos Aires (Argentina)

收藏
Mendeley Data2024-01-31 更新2024-06-30 收录
下载链接:
https://data.mendeley.com/datasets/3fszgrvm2r
下载链接
链接失效反馈
资源简介:
This dataset presents a collection of the official local governments' Twitter activity in Buenos Aires Province in Argentina. The collection is entirely in Spanish and was built by crawling each local government's social media accounts and the reactions it received. The collection focuses on the content-based relations established between the local government authorities and the citizens, instead of on the follower/followee relationship. The dataset is useful for studying how government entities manifest themselves in social media and their different ways of transmitting information; and how citizens interact and express their commitment to the government entities. The collection includes the account activities before, during and after the COVID-19 pandemic. Tweets span between 2009 and December 2022. Data was collected using the Twitter API.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录

stanford_cars

该数据集是一个包含多个汽车品牌和型号的图片数据集,每个图片样本都标记有相应的汽车品牌和型号信息。数据集适用于图像识别和分类任务,特别是汽车品牌和型号的识别。

huggingface 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

VEDAI

用于训练YOLO模型的VEDAI数据集,包含图像和标签,用于目标检测和跟踪。

github 收录

PlantVillage

在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。

OpenDataLab 收录