five

Evaluating the predictors of habitat use and successful reproduction in a model bird species using a large scale automated acoustic array|鸟类生态学数据集|声学监测数据集

收藏
DataONE2024-04-13 更新2024-06-08 收录
鸟类生态学
声学监测
下载链接:
https://search.dataone.org/view/sha256:f742af910c6088c37e4a853b6b2ea22cf01a74ecc0290124f3651b22d9965920
下载链接
链接失效反馈
资源简介:
The emergence of continental to global scale biodiversity data has led to growing understanding of patterns in species distributions, and the determinants of these distributions, at large spatial scales. However, identifying the specific mechanisms, including demographic processes, and determining species distributions remains difficult, as large-scale data are typically restricted to observations of only species presence. New remote automated approaches for collecting data, such as automated recording units (ARUs), provide a promising avenue towards direct measurement of demographic processes, such as reproduction, that cannot feasibly be measured at scale by traditional survey methods. In this study, we analyze data collected by ARUs from 452 survey points across an approximately 1500 km study region to compare patterns in adult and juvenile distributions in the Great Horned Owl (Bubo virginianus). We specifically examine whether habitat associated with successful reproduction is the ..., Owl surveys: Nighttime autonomous acoustic recordings were collected from 452 survey locations across 1500 km of the eastern United States. Two Convolutional Neural Networks were developed to classify the adult song and juvenile begging call of the Great Horned Owl (Bubo virginianus). These classifiers were run on the recordings and the highest scoring ten five-second clips occurring on ten separate days at each survey location were extracted. These clips were manually reviewed by a human listener to ensure they contained the relevant owl sounds. Presence/absence was translated into 1/0 detection histories to be used in occupancy models. Covariates: GPS coordinates were collected at each survey location (these are not provided to protect landowner identity). National Land Cover Database information was extracted for the amount of forest and agricultural land cover within a 1750 m radius of each survey location for use as occupancy covariates. Tree basal area and < 10 cm DBH stem dens..., , # Evaluating the predictors of habitat use and successful reproduction in a model bird species using a large scale automated acoustic array [https://doi.org/10.5061/dryad.5hqbzkhcz](https://doi.org/10.5061/dryad.5hqbzkhcz) ## Description of the data and file structure Data are provided as a single CSV file **owl_data.csv** with columns * **site_number** (1-452 denoting unique survey locations), * **survey_number** (1-10 denoting the survey number in a sequence of 10), * **song_detections** (1 or 0 indicating presence or absence of Great Horned Owl song), * **beg_detections** (1 or 0 indicating the presence or absence of Great Horned Owl begging calls), * **f_cover_1750m** (the amount of forest within a 1750 m radius of the survey location, centered and scaled), * **f_cover_250m** (the amount of forest within a 250 m radius of the survey location, centered and scaled), * **ag_cover_1750m** (the amount of agricultural land cover within a 1750 m radius of the survey locat...
创建时间:
2025-07-30
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

Spatial_Navigation

这是一个专注于四个代表性任务的多模态增强数据集,这些任务需要不同程度的视觉参与和跨模态交互,包括拼图组装、空间导航、视觉搜索和图表重聚焦。

huggingface 收录

World Values Survey (WVS)

世界价值观调查(World Values Survey, WVS)是一个跨国的、长期的学术调查项目,旨在研究全球不同国家和地区的社会、政治和文化价值观的变化。该调查涵盖了从1981年至今的多个波次,每次调查都包含一系列关于个人价值观、社会规范、政治态度、宗教信仰、家庭观念等方面的问题。数据集包括了来自全球100多个国家和地区的调查结果,提供了丰富的社会科学研究数据。

www.worldvaluessurvey.org 收录

LOL (LOw-Light dataset)

LOL 数据集由 500 个低光和正常光图像对组成,分为 485 个训练对和 15 个测试对。低光图像包含照片捕获过程中产生的噪声。大多数图像是室内场景。所有图像的分辨率均为 400×600。

OpenDataLab 收录

kushalps/cpsc2018

cpsc2018数据集包含图像和对应的标签,标签涵盖了如1AVB、AF、LBBB等多种类别。数据集分为训练集、验证集和测试集,分别存储在不同的文件路径中,总下载大小约为2.48GB,实际数据集大小约为2.35GB。训练集包含44327个样本,验证集包含285个样本,测试集包含1283个样本。

hugging_face 收录