five

罗定市自然资源局乡村建设规划许可证|乡村建设数据集|规划许可证数据集

收藏
开放广东2021-12-30 更新2024-02-29 收录
乡村建设
规划许可证
下载链接:
https://gddata.gd.gov.cn/opdata/base/collect?chooseValue=collectForm
下载链接
链接失效反馈
资源简介:
罗定市自然资源局乡村建设规划许可证
提供机构:
云浮市
创建时间:
2021-12-29
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

SAVEE

SAVEE(Surrey Audio-Visual Expressed Emotion)数据集包含480个音频和视频文件,由4名男性英语母语者在7种不同的情绪状态下录制。这些情绪包括愤怒、高兴、悲伤、惊讶、恐惧、厌恶和中性。每个文件的时长约为3秒,总时长约为24分钟。该数据集主要用于情感识别研究。

kahlan.eps.surrey.ac.uk 收录

市规划和自然资源局-深圳市建设项目用地批准信息(划拨)

市规划和自然资源局-深圳市建设项目用地批准信息(划拨)

深圳市政府数据开放平台 收录

LFW (Labeled Faces in the Wild)

Labeled Faces in the Wild,是一个人脸照片数据库,旨在研究无约束的人脸识别问题。该数据集包含从网络收集的超过 13,000 张人脸图像。每张脸都标有图中人物的名字。照片中的 1680 人在数据集中有两张或更多张不同的照片。这些人脸的唯一限制是它们是由 Viola-Jones 人脸检测器检测到的。更多细节可以在下面的技术报告中找到。

OpenDataLab 收录

PU Dataset

德国帕德博恩大学(PU)轴承故障诊断数据集提供了丰富的轴承故障信号数据,包括内圈、外圈和滚动体故障等多种类型的轴承故障。与其他数据集相比,PU数据集的特色在于包含了大量的电机驱动系统故障数据,为轴承故障诊断研究提供了一个全面的实验平台。

github 收录

OpenML-CC18

我们提倡使用经过整理的、全面的机器学习数据集基准测试套件,以标准化的基于 OpenML 的接口和用 Python、Java 和 R 编写的互补软件工具包为后盾。我们展示了如何使用标准化的基于 OpenML 的基准测试套件轻松执行全面的基准测试研究以及用 Python、Java 和 R 编写的互补软件工具包。 OpenML 基准测试套件的主要显着特点是 (i) 通过标准化数据格式、API 和现有客户端库易于使用; (ii) 关于套件内容的机器可读元信息; (iii) 在线共享结果,实现大规模比较。作为第一个这样的套件,我们提出了 OpenML-CC18,这是一个机器学习基准套件,包含 72 个分类数据集,从 OpenML 上的数千个数据集中精心策划。纳入标准是: * 密集数据集独立观察的分类任务 * 类数 >= 2,每个类至少有 20 个观察和少数类与多数类的比例必须超过 5% * 500 <= 观察数 <= 100000 * one-hot-encoding 后的特征数量 < 5000 * 没有人工数据集 * 没有更大数据集的子集,也没有其他数据集的二值化 * 没有可以通过使用单个特征或使用简单的决策树来完全预测的数据集* 来源或参考可用 如果您使用此基准测试套件,请引用:Bernd Bischl、Giuseppe Casalicchio、Matthias Feurer、Frank Hutter、Michel Lang、Rafael G. Mantovani、Jan N. van Rijn 和 Joaquin Vanschoren。 “OpenML 基准测试套件”arXiv:1708.03731v2 [stats.ML] (2019)。 @article{oml-benchmarking-suites, title={OpenML Benchmarking Suites}, author={Bernd Bischl and Giuseppe Casalicchio and Matthias Feurer and Frank Hutter and Michel Lang and Rafael G. Mantovani and Jan N. van Rijn and Joaquin Vanschoren},年={2019},日记={arXiv:1708.03731v2 [stat.ML]} }

OpenDataLab 收录