five

WHALES|自动驾驶数据集|多智能体协同感知数据集

收藏
arXiv2024-11-20 更新2024-11-22 收录
自动驾驶
多智能体协同感知
下载链接:
https://github.com/chensiweiTHU/WHALES
下载链接
链接失效反馈
资源简介:
WHALES数据集由清华大学开发,使用CARLA模拟器生成,专注于自动驾驶中的多智能体协同感知。数据集包含70K RGB图像、17K LiDAR帧和2.01M 3D边界框注释,涵盖多种道路场景。创建过程中,通过优化模拟速度和计算成本,实现了每驾驶序列平均8.4个智能体的记录。该数据集主要用于解决自动驾驶中的遮挡和感知范围有限的问题,支持V2V和V2I感知任务,推动合作感知技术的发展。
提供机构:
清华大学
创建时间:
2024-11-20
原始信息汇总

WHALES 数据集概述

数据集简介

WHALES(Wireless Enhanced Autonomous vehicles with Large number of Engaged agents)是一个由CARLA模拟器生成的自动驾驶数据集,旨在解决单系统感知范围有限和遮挡问题。该数据集平均每驾驶序列包含8.4个代理,提供了大规模的代理和视角,并记录了代理行为,支持多任务合作感知。

数据集特点

  • 代理数量:平均每驾驶序列包含8.4个代理,是目前自动驾驶数据集中代理数量最多的。
  • 任务支持:支持多任务合作感知,包括感知和规划任务。
  • 传感器配置:包括LiDAR和摄像头,提供丰富的感知数据。

数据集比较

数据集 年份 真实/模拟 V2X 图像 点云 3D标注 类别 平均代理数
KITTI 2012 真实 15k 15k 200k 8 1
nuScenes 2019 真实 1.4M 400k 1.4M 23 1
DAIR-V2X 2021 真实 V2V&I 39k 39k 464k 10 2
V2X-Sim 2021 模拟 V2V&I 0 10k 26.6k 2 2
OPV2V 2022 模拟 V2V 44k 11k 230k 1 3
DOLPHINS 2022 模拟 V2V&I 42k 42k 293k 3 3
V2V4Real 2023 真实 V2V 40k 20k 240k 5 2
WHALES (Ours) 2024 模拟 V2V&I 70k 17k 2.01M 3 8.4

代理类别

代理位置 代理类别 传感器配置 规划与控制 任务 生成位置
在路上 不受控CAV LiDAR × 1 + 摄像头 × 4 CARLA自动驾驶 感知 随机,确定性
在路上 受控CAV LiDAR × 1 + 摄像头 × 4 RL算法 感知与规划 随机,确定性
路边 RSU LiDAR × 1 + 摄像头 × 4 RL算法 感知与规划 静态
任意位置 障碍物代理 无传感器 CARLA自动驾驶 无任务 随机

实验结果

单系统3D目标检测基准(50m/100m)

方法 $ ext{AP}_{Veh}uparrow$ $ ext{AP}_{Ped}uparrow$ $ ext{AP}_{Cyc}uparrow$ $mAPuparrow$ $mATEdownarrow$ $mASEdownarrow$ $mAOEdownarrow$ $mAVEdownarrow$ $NDSuparrow$
Pointpillars 67.1/41.5 38.0/6.3 37.3/11.6 47.5/19.8 0.117/0.247 0.876/0.880 1.069/1.126 1.260/1.625 33.8/18.6
SECOND 58.5/38.8 27.1/12.1 24.1/12.9 36.6/21.2 0.106/0.156 0.875/0.878 1.748/1.729 1.005/1.256 28.5/20.3
RegNet 66.9/42.3 38.7/8.4 32.9/11.7 46.2/20.8 0.119/0.240 0.874/0.881 1.079/1.158 1.231/1.421 33.2/19.2
VoxelNeXt 64.7/42.3 52.2/27.4 35.9/9.0 50.9/26.2 0.075/0.142 0.877/0.877 1.212/1.147 1.133/1.348 36.0/22.9

合作3D目标检测基准(50m/100m)

方法 $ ext{AP}_{Veh}uparrow$ $ ext{AP}_{Ped}uparrow$ $ ext{AP}_{Cyc}uparrow$ $mAPuparrow$ $mATEdownarrow$ $mASEdownarrow$ $mAOEdownarrow$ $mAVEdownarrow$ $NDSuparrow$
No Fusion 67.1/41.5 38.0/6.3 37.3/11.6 47.5/19.8 0.117/0.247 0.876/0.880 1.069/1.126 1.260/1.625 33.8/18.6
F-Cooper 75.4/52.8 50.1/9.1 44.7/20.4 56.8/27.4 0.117/0.205 0.874/0.879 1.074/1.206 1.358/1.449 38.5/22.9
Raw-level Fusion 71.3/48.9 38.1/8.5 40.7/16.3 50.0/24.6 0.135/0.242 0.875/0.882 1.062/1.242 1.308/1.469 34.9/21.1
*VoxelNeXt 71.5/50.6 60.1/35.4 47.6/21.9 59.7/35.9 0.085/0.159 0.877/0.878 1.070/1.204 1.262/1.463 40.2/27.6

不同调度策略下的mAP分数(50m/100m)

推理训练 No Fusion Closest Agent Single Random Multiple Random Full Communication
No Fusion 50.9/26.2 50.9/23.3 51.3/25.3 50.3/22.9 45.6/18.8
Closest Agent 39.9/20.3 58.4/30.2 58.3/32.6 57.7/30.5 55.4/10.8
Single Random 43.3/22.8 57.9/31.0 58.4/33.3 57.7/31.4 55.0/14.6
MASS 55.5/11.0 58.8/33.7 58.9/34.0 57.3/32.3 54.1/27.4
Historical Best 54.8/29.6 58.6/31.7 58.9/34.0 58.3/32.6 54.1/27.4
Multiple Random 34.5/16.9 60.7/35.1 61.2/37.1 61.4/36.4 58.8/12.9
Full Communication 29.1/10.5 63.7/38.4 64.0/39.9 64.7/41.3 65.1/39.2
AI搜集汇总
数据集介绍
main_image_url
构建方式
WHALES数据集通过CARLA模拟器构建,旨在解决自动驾驶系统中的遮挡和感知范围有限的问题。该数据集生成了大量多代理的驾驶序列,平均每个序列包含8.4个代理,超越了现有数据集的规模。通过优化CARLA的模拟速度和计算成本,WHALES数据集能够在处理大量代理时保持高效的模拟性能。此外,数据集还记录了代理的行为信息,为合作感知任务提供了丰富的数据支持。
使用方法
WHALES数据集适用于多种自动驾驶任务,包括独立和合作的三维物体检测以及代理调度。研究者可以使用MMDetection3D框架来实现和评估模型性能。数据集提供了详细的基准测试和基线模型,便于研究者快速上手并进行实验。通过集成多种调度算法,WHALES数据集支持研究者在多代理环境中探索和优化调度策略,从而提升自动驾驶系统的整体性能和安全性。
背景与挑战
背景概述
在自动驾驶技术的快速发展中,实现高水平的交通安全和可靠性仍然是一个关键挑战,特别是在单个系统中由于遮挡和有限的感知范围。协作感知作为一种有前景的解决方案,通过车辆之间的信息共享来增强感知能力。然而,现有研究受限于数据集中代理数量较少的问题。为了填补这一空白,清华大学的一组研究人员于2024年推出了WHALES数据集,该数据集利用CARLA模拟器生成,每段驾驶序列平均包含8.4个代理。WHALES不仅提供了最多的代理和视角,还记录了代理行为,支持多任务协作感知。这一扩展使得协作感知中的新支持任务成为可能,如代理调度任务,其中自我代理选择多个候选代理之一进行协作,以优化自动驾驶中的感知增益。
当前挑战
WHALES数据集在构建过程中面临多个挑战。首先,扩展代理数量带来了显著的计算和技术障碍,因为模拟详细传感器数据和复杂交互的高计算需求。其次,现有数据集在协作感知方面存在局限性,主要集中在单车辆场景,限制了其应用于协作感知的适用性。此外,尽管模拟方法在生成协作感知数据集方面具有优势,但仍存在代理数量有限的挑战。WHALES通过优化CARLA模拟器的速度和计算成本,成功处理了大量代理,但仍需解决模拟时间和计算成本随代理数量增加而呈非线性增长的问题。最后,数据集在支持多代理调度任务方面引入了新的挑战,如在训练和推理阶段选择有效策略的复杂性。
常用场景
经典使用场景
在自动驾驶领域,WHALES数据集以其独特的多智能体调度特性,成为研究合作感知任务的经典工具。该数据集通过CARLA模拟器生成,每段驾驶序列平均包含8.4个智能体,涵盖了从交叉口到高速公路等多种复杂场景。研究者利用WHALES数据集进行3D物体检测和智能体调度实验,通过优化感知增益,显著提升了自动驾驶系统的安全性和可靠性。
解决学术问题
WHALES数据集解决了自动驾驶领域中由于遮挡和感知范围限制导致的感知不完整问题。通过引入多智能体合作感知,该数据集为研究者提供了一个大规模、多视角的实验平台,推动了合作感知技术的发展。其丰富的数据和详细的标注信息,使得研究者能够深入探索智能体调度策略,从而在复杂交通环境中实现更精确的感知和决策。
实际应用
在实际应用中,WHALES数据集为自动驾驶系统的开发和测试提供了宝贵的资源。通过模拟多种真实交通场景,该数据集帮助开发者优化车辆间的通信和感知策略,提升自动驾驶车辆在复杂环境中的适应性和安全性。此外,WHALES数据集还支持智能体行为和轨迹的记录,为自动驾驶系统的控制和规划算法提供了丰富的训练数据。
数据集最近研究
最新研究方向
在自动驾驶领域,WHALES数据集的最新研究方向聚焦于多智能体协同感知与调度。该数据集通过CARLA模拟器生成,显著提升了协同感知任务中的智能体数量,平均每驾驶序列包含8.4个智能体,超越了现有数据集的规模。研究者们正利用这一数据集探索多智能体间的协同策略,特别是在非理想通信条件下的感知增强。此外,WHALES数据集还引入了智能体调度任务,通过优化智能体间的合作选择,提升自动驾驶系统在复杂环境中的感知能力。这一研究方向不仅推动了自动驾驶技术的安全性和可靠性,也为未来多智能体系统的设计与优化提供了宝贵的实验平台。
相关研究论文
  • 1
    WHALES: A Multi-agent Scheduling Dataset for Enhanced Cooperation in Autonomous Driving清华大学 · 2024年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

新型人类活动识别数据集

该数据集由都灵理工大学和马尔默大学合作创建,包含7类活动,利用60 GHz毫米波FMCW雷达在真实环境中收集。数据集旨在支持机器学习和深度学习模型在人类活动识别方面的研究,特别是对雷达特征图的时空结构进行保留的多维特征向量。数据集将公开,以推动FMCW雷达在智能环境监测中的应用研究。

arXiv 收录

Yahoo Finance

Dataset About finance related to stock market

kaggle 收录