five

东莞市松山湖片区工伤保险住院伙食补助费申领办件结果公示信息|工伤保险数据集|政务服务数据集

收藏
开放广东2025-02-01 更新2024-02-29 收录
工伤保险
政务服务
下载链接:
https://gddata.gd.gov.cn/opdata/base/collect?chooseValue=collectForm
下载链接
链接失效反馈
资源简介:
该数据包含历年来东莞市松山湖片区工伤保险住院伙食补助费申领办件结果公示信息,针对东莞市政务服务办件结果工作,收集在办件过程中,系统分配的唯一办件编号和办理时间和结果,并根据《广东政务服务网办件过程数据采集规范》规则进行数据清洗整理,若需使用到此类办件数据的明细数据,以各单位挂接为准。
提供机构:
东莞市
创建时间:
2023-12-30
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

Paper III (Walker et al. 2024)

Data products used in 3-D CMZ Paper III, Walker et al. (2024). The full cloud catalogue is provided in tabular format, along with a full CMZ map showing the clouds and their assigned IDs. For each cloud ID in the published catalogue there are: - Individual cube cutouts from the MOPRA 3mm CMZ survey (HC3N, HCN, and HNCO). - Individual cube cutouts from the APEX 1mm CMZ survey (13CO, C18O, and H2CO). - Cloud-averaged spectra of the ATCA H2CO 4.83 GHz line. - PV slices of the ATCA H2CO 4.83 GHz line, taken across the major axis of the source. - Where applicable, there are mask files which correspond to the different velocity components of the cloud. In these cases, there are two mask files per velocity component, corresponding to the different masking approaches described in the paper.

DataCite Commons 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

MMOral

MMOral是一个针对全景X光片解读的大规模多模态指令数据集和基准。它包括20,563张带有1.3百万条指令跟随实例的注释图像,涵盖了多种任务类型,如属性提取、报告生成、视觉问答和基于图像的对话。此外,我们还提出了MMOral-Bench,这是一个涵盖牙科五个关键诊断维度的综合评估套件。我们评估了64个LVLMs在MMOral-Bench上的表现,发现即使是表现最好的模型GPT-4o,也只能达到41.45%的准确率,这揭示了当前模型在这一领域的显著局限性。为了促进该特定领域的发展,我们还提出了OralGPT,它使用我们精心策划的MMOral指令数据集对Qwen2.5-VL-7B进行监督微调。值得注意的是,一个SFT周期就为LVLMs带来了显著的性能提升,例如,OralGPT表现出24.73%的改进。MMOral和OralGPT都具有作为智能牙科关键基础的巨大潜力,并使牙科领域中的多模态AI系统更具临床意义。数据集、模型、基准和评估套件可在上述网址获取。

arXiv 收录