A89_3133.jpg
收藏China Health and Nutrition Survey (CHNS)
China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。
www.cpc.unc.edu 收录
大学生运动和体质健康数据集(2014-2023)
《大学生运动与体质健康数据集(2014-2023)》涵盖了大学生群体在运动能力、基础身体形态、身体机能及身体素质等多个方面的关键基础数据。该数据集的采集时间跨度为2014年至2023年,样本采集自全国34个省级行政区域,共计123281名大学生参与,平均年龄为20.53岁。建立大学生运动和体质健康数据集可以准确把握学生体质健康的整体水平和变化趋势,了解大学生运动和体质健康状况,对指导个性化健康干预、优化体育教育资源配置、支持促进科学研究以及提高公众健康意识等均具有重要意义。
国家人口健康科学数据中心 收录
中国劳动力动态调查
“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。
中国学术调查数据资料库 收录
Oxford 102 Flowers
牛津102花卉数据集是一个主要用于图像分类的花卉集合数据集,分为102个类别,共102种花卉,其中每个类别包含40到258幅图像。 该数据集由牛津大学工程科学系2008年在相关论文 “大量类别上的自动花分类” 中发布
OpenDataLab 收录
FACED
FACED数据集是由清华大学脑与智能实验室和智能技术与系统国家重点实验室共同创建,包含从123名参与者收集的32通道EEG信号,用于情感计算研究。数据集通过记录参与者观看28个情感诱发视频片段时的EEG信号构建,旨在通过EEG信号分析情感状态。创建过程中,数据经过标准化和统一预处理,设计了四个EEG分类任务。该数据集主要应用于情感识别和脑机接口领域,旨在解决情感计算中的分类问题,提高情感识别的准确性和效率。
arXiv 收录
