five

Ironic error and overcompensation error under pressure

收藏
Mendeley Data2024-06-29 更新2024-06-30 收录
下载链接:
https://figshare.com/articles/dataset/Ironic_error_and_overcompensation_error_under_pressure/19398188
下载链接
链接失效反馈
资源简介:
The conflicting predictions of the ironic process theory and the implicit overcompensation hypothesis has been presented as theories to explain the characteristics of errors that occur when a certain behavior is prohibited. The ironic process theory predicts that instructions that prohibit a particular behavior will increase the outcome which should be avoided itself (the ironic error). The implicit overcompensation hypothesis, however, predicts that the opposite of the outcome to be avoided (the overcompensation error) will increase. We examined how these two errors, which negatively affect performance, are influenced by pressure and a perceived sense of difficulty. As an experiment, 12 college tennis players were asked to perform a tennis stroke task in which they had to hit a ball launched from the opponent's court back toward a target zone. In doing so, we instructed them to avoid hitting toward the prohibited (ironic) zones and to return as many balls to the target zone as possible. They performed this task under low- and high-pressure conditions, using either their preferred or less-preferred hitting style based on their perceived difficulty. The results showed that pressure significantly increased the number of balls returned to the zone opposite the ironic zone (overcompensation errors). The perceived difficulty was also found to significantly increase errors around the ironic zone under low-pressure condition and around the overcompensation zone under high-pressure conditions. These results suggest that pressure increases the overcompensation errors that occur when a particular behavior is prohibited, while perceived difficulty increases the random errors caused by conscious processing.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Granary

Granary是一个包含25种欧洲语言的大规模语音识别和翻译数据集,由NVIDIA等多家机构联合创建。数据集通过伪标签技术生成,旨在解决低资源语言的语音处理问题。数据集包含约643,237.57小时的语音数据,经过精心筛选和处理,旨在提高数据质量并减少数据中的错误。该数据集可用于自动语音识别(ASR)和自动语音翻译(AST)等领域的研究,有助于提高语音模型在低资源语言上的准确性和鲁棒性。

arXiv 收录

giovannidemuri__sharegpt-ex50000-seed5_llama8b-er-v573-seed2-hx_256_ngt0.7_tp0.9

该数据集包含了用户与助手之间的对话,其中包含两个字段:用户发言和助手回应,均为字符串类型。训练集大小为38646852字节,共有44096条对话记录。

huggingface 收录

波士顿房价数据集

波士顿房价数据集是一个经典的机器学习数据集,通常用于回归任务,尤其是房价预测。下方文档中有所有字段顺序的描述。

阿里云天池 收录

Materials Project 在线材料数据库

Materials Project 是一个由伯克利加州大学和劳伦斯伯克利国家实验室于 2011 年共同发起的大型开放式在线材料数据库。这个项目的目标是利用高通量第一性原理计算,为超过百万种无机材料提供全面的性能数据、结构信息和计算模拟结果,以此加速新材料的发现和创新过程。数据库中的数据不仅包括晶体结构和能量特性,还涵盖了电子结构和热力学性质等详尽信息,为研究人员提供了丰富的材料数据资源。相关论文成果为「Commentary: The Materials Project: A materials genome approach to accelerating materials innovation」。

超神经 收录

FlowBench

FlowBench是由爱荷华州立大学创建的一个大规模流体模拟数据集,包含超过10,000个样本,旨在评估神经PDE求解器在复杂几何形状上的性能。数据集涵盖了多种复杂几何形状(参数化和非参数化)和流体条件(雷诺数和格拉晓夫数),捕捉了从稳态到瞬态的各种流体现象。每个样本都包含速度、压力和温度场的数据,以及升力、阻力和努塞尔数等工程特征。FlowBench的创建过程包括使用高保真模拟器进行直接数值模拟,确保数据的准确性和可靠性。该数据集主要应用于工程领域,如航空航天、汽车设计和生物流体学,旨在解决复杂几何形状上的流体动力学问题。

arXiv 收录