five

UNHCR Refugee Data|难民数据数据集|数据分析数据集

收藏
github2022-12-17 更新2024-05-31 收录
难民数据
数据分析
下载链接:
https://github.com/SangeethaVenkatesan/asylum_analysis
下载链接
链接失效反馈
资源简介:
该数据集包含了1999年至2017年间由联合国难民署收集的难民数据,用于分析和预测庇护案件的结果,包括分类、回归和聚类算法的应用。
创建时间:
2022-11-22
原始信息汇总

数据集概述

数据集介绍

该数据集包含1999年至2017年间由联合国难民署(UNHCR)收集的难民数据,旨在预测难民庇护案件的结果。数据集主要用于探索性数据分析和数据可视化,以提高公众意识,并使用多种机器学习模型(包括分类、回归和聚类算法)来预测庇护案件的状态和接受或拒绝的庇护案件数量,并比较不同模型的准确性。

先前研究

2017年6月,Daniel L. Chen和Jess Eagle发表了一篇题为“Can Machine Learning Help Predict the Outcome of Asylum Adjudications?”的研究论文,分析了美国492,903个庇护听证会,使用随机森林分类器将申请分类为批准或拒绝,并获得了79%的准确率。本项目受该论文启发,旨在使用UNHCR从1999年到2017年收集的庇护申请数据集,识别庇护案件是被接受还是被拒绝。本项目不仅关注分类模型,还将使用回归模型来预测接受或拒绝的申请数量,并比较不同的分类和回归模型,以确定最适合该数据集的模型。

AI搜集汇总
数据集介绍
main_image_url
构建方式
UNHCR Refugee Data数据集构建于1999年至2017年间,由联合国难民署(UNHCR)收集,涵盖了全球范围内因战争和冲突被迫离开家园的难民数据。该数据集通过记录难民的庇护申请及其结果,旨在为研究者提供详实的历史数据,以便进行深入的分析和预测。数据收集过程中,UNHCR采用了标准化的数据录入流程,确保数据的准确性和一致性。
特点
该数据集的特点在于其广泛的时间跨度和地理覆盖范围,涵盖了全球多个国家和地区的难民庇护申请数据。数据集中不仅包含庇护申请的基本信息,还记录了申请结果(接受或拒绝),为研究者提供了丰富的分析维度。此外,数据集的规模庞大,涵盖了数十万条记录,使其成为研究难民庇护申请趋势和预测模型构建的理想选择。
使用方法
UNHCR Refugee Data数据集的使用方法多样,研究者可以通过探索性数据分析(EDA)揭示难民庇护申请的趋势和模式。此外,该数据集适用于多种机器学习模型的训练,包括分类模型(如随机森林、支持向量机)和回归模型,用于预测庇护申请的结果或申请数量。通过比较不同模型的准确性,研究者可以识别出最适合该数据集的预测方法,并为政策制定提供数据支持。
背景与挑战
背景概述
UNHCR Refugee数据集由联合国难民署(UNHCR)于1999年至2017年间收集,旨在记录全球范围内因战争和冲突而被迫离开家园的难民数据。该数据集的核心研究问题是通过数据分析与机器学习模型预测庇护申请的批准结果,从而为政策制定者提供决策支持。主要研究人员包括ANUSHA PRAKASH、SAJIAH NAQIB和SANGEETHA VENKATESAN,他们的研究灵感来源于2017年Daniel L. Chen和Jess Eagle发表的论文,该论文通过随机森林分类器预测庇护申请结果,准确率达到79%。UNHCR Refugee数据集不仅推动了庇护申请预测领域的研究,还为全球难民问题的量化分析提供了重要数据支持。
当前挑战
UNHCR Refugee数据集在解决庇护申请预测问题时面临多重挑战。首先,庇护申请结果受多种复杂因素影响,如申请人背景、来源国政治环境等,这些因素难以通过简单的特征工程完全捕捉。其次,数据集中存在大量不平衡类别,导致模型在预测少数类别时表现不佳。此外,数据的时间跨度长达18年,期间政策和社会环境的变化可能影响模型的泛化能力。在构建过程中,研究人员还需处理数据缺失、不一致性以及高维特征选择等问题,这些都对模型的准确性和鲁棒性提出了严峻挑战。
常用场景
经典使用场景
UNHCR Refugee Data数据集在难民研究领域中被广泛用于探索性数据分析和数据可视化,以揭示全球难民流动的趋势和模式。通过对1999年至2017年间联合国难民署收集的难民数据进行深入分析,研究者能够更好地理解难民申请的背景、原因及其结果。这一数据集还常被用于构建机器学习模型,预测难民申请的批准或拒绝状态,从而为政策制定者提供数据支持。
衍生相关工作
该数据集衍生了多项经典研究工作,其中最著名的是2017年Daniel L. Chen和Jess Eagle发表的论文《Can Machine Learning Help Predict the Outcome of Asylum Adjudications?》。他们使用随机森林分类器对美国492,903个难民听证会数据进行分析,预测申请结果,准确率达到79%。这一研究启发了后续许多基于UNHCR数据集的机器学习应用,推动了难民研究领域的技术进步。
数据集最近研究
最新研究方向
近年来,随着全球难民危机的加剧,利用机器学习技术预测庇护申请结果成为研究热点。基于UNHCR难民数据集的研究,主要集中在通过探索性数据分析和数据可视化揭示难民流动趋势,并运用分类、回归和聚类算法预测庇护申请的结果。例如,2017年的一项研究通过随机森林分类器对庇护申请进行分类,取得了79%的准确率。当前研究进一步扩展了这一方向,不仅关注分类模型的优化,还尝试通过回归模型预测庇护申请的接受或拒绝数量,并比较不同模型的性能。这些研究不仅为政策制定者提供了数据支持,也为改善难民庇护流程提供了技术依据。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Breast Ultrasound Images (BUSI)

小型(约500×500像素)超声图像,适用于良性和恶性病变的分类和分割任务。

github 收录

CatMeows

该数据集包含440个声音样本,由21只属于两个品种(缅因州库恩猫和欧洲短毛猫)的猫在三种不同情境下发出的喵声组成。这些情境包括刷毛、在陌生环境中隔离和等待食物。每个声音文件都遵循特定的命名约定,包含猫的唯一ID、品种、性别、猫主人的唯一ID、录音场次和发声计数。此外,还有一个额外的zip文件,包含被排除的录音(非喵声)和未剪辑的连续发声序列。

huggingface 收录

VoxBox

VoxBox是一个大规模语音语料库,由多样化的开源数据集构建而成,用于训练文本到语音(TTS)系统。

github 收录

FER2013

FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

github 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录