five

wrapped.io | Glassdoor Company Reviews Data | Largest coverage available | Employee reviews | ...|公司评价数据集|员工评论数据集

收藏
Databricks2024-11-15 收录
公司评价
员工评论
下载链接:
https://marketplace.databricks.com/details/6bec6513-2e26-416e-b529-f1583dc7baf3/Wrapped-io_wrapped.io-Glassdoor-Company-Reviews-Data-Largest-coverage-available-Employee-reviews-
下载链接
链接失效反馈
资源简介:
Unlock unparalleled insights with wrapped.io's datasets, a rich compilation that spans Glassdoor Employee Review Data, Consumer Review Data, Company Data, Sentiment Data and Web Scraping Data. The dataset includes: 1 Million Glassdoor Company Profiles: Data with 37 fields per company profile. Over 29 Million Employee Reviews: Data with 23 fields per review. Depth and Diversity of Glassdoor Employee / Consumer Review data: this dataset include qualitative reviews, providing a richer and more nuanced understanding of company cultures and employee experiences. They feature detailed Glassdoor Employee / Consumer Review data, Company Data ratings, and feedback on a wide range of aspects such as work-life balance, management quality, functionality. High volume and superior quality ensure robust and accurate analytics. Ideal for private equity and venture capital firms, applied by market analysts, HR professionals, and corporate strategists. This Company Data and Employee/ Consumer Review data are vital tools for deal-sourcing, competitive analysis, strategic planning. Cross-Industry and Global Reach: our Company Data, Employee/ Consumer Review Data datasets' extensive coverage across various industries and countries sets them apart, offering a comprehensive view of company performances worldwide. Integrated Employee and Employer Perspectives: The unique combination of employee reviews with employer information offers a holistic view of each company. What are the primary use-cases or verticals of this Employee / Consumer Review Data? Market Research: Providing insights into industry-specific employee/customer satisfaction and company cultures, useful for competitors and market analysts. Employee / Customer Review Data are used as Sentiment Data too. Investment and Financial Analysis: Helping investors assess company health and stability through employee/customer satisfaction and company culture indicators. Employee / Consumer Review Data and Company Data enlarge visibility. Corporate Strategy: Assisting businesses in benchmarking against competitors and identifying areas for internal improvement. Human Resources and Recruitment: Assisting companies in understanding workplace trends, employer branding, and employee expectations through our Company Data and Employee / Consumer Review Data. How does this Company Data and Employee / Consumer Review Data fit into your broader data offering? As part of a larger data suite, these datasets complement financial, operational, and market data. They add a valuable dimension to understanding a company's internal dynamics, which can significantly impact its market performance and growth potential. Integrating these datasets with other data types provides a comprehensive toolkit for stakeholders looking for a multi-faceted analysis of companies. Many investors find Company Data and Employee / Consumer Review Data beneficial. Sourced from reputable platforms like Glassdoor, our datasets guarantee reliability and relevance, incorporating Consumer Review Data, Company Data, and Web Scraping Data. More about us: www.wrapped.io
提供机构:
Wrapped.io
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CatMeows

该数据集包含440个声音样本,由21只属于两个品种(缅因州库恩猫和欧洲短毛猫)的猫在三种不同情境下发出的喵声组成。这些情境包括刷毛、在陌生环境中隔离和等待食物。每个声音文件都遵循特定的命名约定,包含猫的唯一ID、品种、性别、猫主人的唯一ID、录音场次和发声计数。此外,还有一个额外的zip文件,包含被排除的录音(非喵声)和未剪辑的连续发声序列。

huggingface 收录

Materials Project

材料项目是一组标有不同属性的化合物。数据集链接: MP 2018.6.1(69,239 个材料) MP 2019.4.1(133,420 个材料)

OpenDataLab 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

FER2013

FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

github 收录

中国农村金融统计数据

该数据集包含了中国农村金融的统计信息,涵盖了农村金融机构的数量、贷款余额、存款余额、金融服务覆盖率等关键指标。数据按年度和地区分类,提供了详细的农村金融发展状况。

www.pbc.gov.cn 收录